Skip to main content

Laser Capture Microdissection of Mouse Growth Plate Cartilage

  • Protocol
  • First Online:
Chondrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2245))

Abstract

The ability to identify, isolate, and study pure populations of cells is critical for understanding normal physiology in organs and tissues, which involves spatial regulation of signaling pathways and interactions between cells with different functions, expression profiles, and lineages. Here, we focus on assessing the growth plate cartilage, composed of multiple functionally and histologically distinct zones, to investigate temporally and spatially dependent gene expression differences. In this chapter, we describe the method of laser capture microdissection to isolate chondrocytes from different zones of differentiation in the mouse growth plate cartilage for RNA isolation, and subsequent downstream applications, such as RNA-sequencing and quantitative real-time PCR. We also provide an assessment of different factors contributing to the integrity of the isolated RNA, such as staining methods and procedures in RNA isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937):332–336. https://doi.org/10.1038/nature01657

    Article  CAS  PubMed  Google Scholar 

  2. Lui JC, Nilsson O, Baron J (2014) Recent research on the growth plate: recent insights into the regulation of the growth plate. J Mol Endocrinol 53(1):T1–T9. https://doi.org/10.1530/jme-14-0022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563(7730):254–258. https://doi.org/10.1038/s41586-018-0662-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD, Baron J (2002) The role of the resting zone in growth plate chondrogenesis. Endocrinology 143(5):1851–1857. https://doi.org/10.1210/endo.143.5.8776

    Article  CAS  PubMed  Google Scholar 

  5. Ono N, Ono W, Nagasawa T, Kronenberg HM (2014) A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol 16(12):1157–1167. https://doi.org/10.1038/ncb3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lui JC, Yue S, Lee A, Kikani B, Temnycky A, Barnes KM, Baron J (2019) Persistent Sox9 expression in hypertrophic chondrocytes suppresses transdifferentiation into osteoblasts. Bone 125:169–177. https://doi.org/10.1016/j.bone.2019.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, Lefebvre V (2012) Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell 22(3):597–609. https://doi.org/10.1016/j.devcel.2011.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garrison P, Yue S, Hanson J, Baron J, Lui JC (2017) Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS One 12(5):e0176752. https://doi.org/10.1371/journal.pone.0176752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Dudley AT (2009) Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development 136(7):1083–1092. https://doi.org/10.1242/dev.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001. https://doi.org/10.1126/science.274.5289.998

    Article  CAS  PubMed  Google Scholar 

  11. Mikulowska-Mennis A, Taylor TB, Vishnu P, Michie SA, Raja R, Horner N, Kunitake ST (2002) High-quality RNA from cells isolated by laser capture microdissection. BioTechniques 33(1):176–179. https://doi.org/10.2144/02331md06

    Article  CAS  PubMed  Google Scholar 

  12. Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S (2015) Laser capture microdissection: big data from small samples. Histol Histopathol 30(11):1255–1269. https://doi.org/10.14670/hh-11-622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603. https://doi.org/10.1038/nprot.2006.85

    Article  CAS  PubMed  Google Scholar 

  14. Nichterwitz S, Chen G, Aguila Benitez J, Yilmaz M, Storvall H, Cao M, Sandberg R, Deng Q, Hedlund E (2016) Laser capture microscopy coupled with smart-seq2 for precise spatial transcriptomic profiling. Nat Commun 7:12139. https://doi.org/10.1038/ncomms12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Curran S, McKay JA, McLeod HL, Murray GI (2000) Laser capture microscopy. Mol Pathol 53(2):64–68. https://doi.org/10.1136/mp.53.2.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lui JC, Garrison P, Nguyen Q, Ad M, Keembiyehetty C, Chen W, Jee YH, Landman E, Nilsson O, Barnes KM, Baron J (2016) EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy. Nat Commun 7:13685. https://doi.org/10.1038/ncomms13685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lui JC, Jee YH, Garrison P, Iben JR, Yue S, Ad M, Nguyen Q, Kikani B, Wakabayashi Y, Baron J (2018) Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions. PLoS Biol 16(7):e2005263. https://doi.org/10.1371/journal.pbio.2005263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahashi N, Tarumi W, Hamada N, Ishizuka B, Itoh MT (2017) Cresyl violet stains mast cells selectively: its application to counterstaining in immunohistochemistry. Zool Sci 34(2):147–150. https://doi.org/10.2108/zs160162

    Article  Google Scholar 

  19. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66(1):198–200. https://doi.org/10.1083/jcb.66.1.198

    Article  CAS  PubMed  Google Scholar 

  20. Kawamoto T, Kawamoto K (2014) Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamot's film method (2012). Methods Mol Biol 1130:149–164. https://doi.org/10.1007/978-1-62703-989-5_11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian C. Lui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kikani, B., Lui, J.C. (2021). Laser Capture Microdissection of Mouse Growth Plate Cartilage. In: Haqqi, T.M., Lefebvre, V. (eds) Chondrocytes. Methods in Molecular Biology, vol 2245. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1119-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1119-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1118-0

  • Online ISBN: 978-1-0716-1119-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics