Skip to main content

Using Primary Human Cells to Analyze Human Cytomegalovirus Biology

  • Protocol
  • First Online:
Human Cytomegaloviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2244))

Abstract

The extensive tropism of human cytomegalovirus (HCMV) results in the productive infection of multiple cell types within the human host. However, infection of other cell types, such as undifferentiated cells of the myeloid lineage, give rise to nonpermissive infections. This aspect has been used experimentally to model latent infection, which is known to be established in the pluripotent CD34+ hematopoietic progenitor cell population resident in the bone marrow in vivo. The absence of a tractable animal model for studies of HCMV has resulted in a number of laboratories employing experimental infection of cells in vitro to simulate both HCMV lytic and latent infection. Herein, we will focus on the techniques used in our laboratory for the isolation and use of primary cells to study aspects of HCMV latency, reactivation, and lytic infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lafemina RL, Hayward GS (1988) Differences in cell-type-specific blocks to immediate early gene expression and DNA replication of human, simian and murine cytomegalovirus. J Gen Virol 69(Pt 2):355–374

    Article  CAS  Google Scholar 

  2. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, Othieno FA, Streblow DN, Garcia JV, Fleming WH, Nelson JA (2010) Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8(3):284–291

    Article  CAS  Google Scholar 

  3. Sinclair J (2014) E. Poole, human cytomegalovirus latency and reactivation in and beyond the myeloid lineage. Futur Virol 6:7

    Google Scholar 

  4. Jackson SE, Sedikides GX, Okecha G, Wills MR (2019) Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol 208(3–4):375–389

    Article  CAS  Google Scholar 

  5. Bego M, Maciejewski J, Khaiboullina S, Pari G, Jeor SS (2005) Characterization of an antisense transcript spanning the UL81-82 locus of human cytomegalovirus. J Virol 79(17):11022–11034

    Article  CAS  Google Scholar 

  6. Weekes MP, Tan SY, Poole E, Talbot S, Antrobus R, Smith DL, Montag C, Gygi SP, Sinclair JH, Lehner PJ (2013) Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 340(6129):199–202

    Article  CAS  Google Scholar 

  7. Goodrum F, McWeeney S (2018) A single-cell approach to the elusive latent human cytomegalovirus transcriptome. MBio 9(3):e01001–e01018

    Article  CAS  Google Scholar 

  8. Shnayder M, Nachshon A, Krishna B, Poole E, Boshkov A, Binyamin A, Maza I, Sinclair J, Schwartz M, Stern-Ginossar N (2018) Defining the transcriptional landscape during cytomegalovirus latency with single-cell RNA sequencing. MBio 9(2):e00013–e00018

    Article  CAS  Google Scholar 

  9. Parry HM, Damery S, Hudson C, Maurer MJ, Cerhan JR, Pachnio A, Begum J, Slager SL, Fegan C, Man S, Pepper C, Shanafelt TD, Pratt G, Moss PA (2016) Cytomegalovirus infection does not impact on survival or time to first treatment in patients with chronic lymphocytic leukemia. Am J Hematol 91(8):776–781

    Article  CAS  Google Scholar 

  10. Jackson SE, Sedikides GX, Okecha G, Poole EL, Sinclair JH, Wills MR (2017) Latent cytomegalovirus (CMV) infection does not detrimentally Alter T cell responses in the healthy old, but increased latent CMV carriage is related to expanded CMV-specific T cells. Front Immunol 8:733

    Article  Google Scholar 

  11. Neron S, Thibault L, Dussault N, Cote G, Ducas E, Pineault N, Roy A (2007) Characterization of mononuclear cells remaining in the leukoreduction system chambers of apheresis instruments after routine platelet collection: a new source of viable human blood cells. Transfusion 47(6):1042–1049

    Article  Google Scholar 

  12. Isomura H, Stinski MF (2003) The human cytomegalovirus major immediate-early enhancer determines the efficiency of immediate-early gene transcription and viral replication in permissive cells at low multiplicity of infection. J Virol 77(6):3602–3614

    Article  CAS  Google Scholar 

  13. Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, Knapp W (1997) flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90(4):1425–1434

    Article  CAS  Google Scholar 

  14. MacAry PA, Lindsay M, Scott MA, Craig JI, Luzio JP, Lehner PJ (2001) Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proc Natl Acad Sci U S A 98(7):3982–3987

    Article  CAS  Google Scholar 

  15. Lathey JL, Spector SA (1991) Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J Virol 65(11):6371–6375

    Article  CAS  Google Scholar 

  16. Choi KD, Vodyanik M (2011) Slukvin, II, Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 6(3):296–313

    Article  CAS  Google Scholar 

  17. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    Article  CAS  Google Scholar 

  18. Goodrum F, Jordan CT, Terhune SS, High K, Shenk T (2004) Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104(3):687–695

    Article  CAS  Google Scholar 

  19. Goodrum F, Reeves M, Sinclair J, High K, Shenk T (2007) Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 110(3):937–945

    Article  CAS  Google Scholar 

  20. Poole EL, Kew VG, Lau JCH, Murray MJ, Stamminger T, Sinclair JH, Reeves MB (2018) A virally encoded DeSUMOylase activity is required for cytomegalovirus reactivation from latency. Cell Rep 24(3):594–606

    Article  CAS  Google Scholar 

  21. Straschewski S, Warmer M, Frascaroli G, Hohenberg H, Mertens T, Winkler M (2010) Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening. PLoS One 5(2):e9174

    Article  Google Scholar 

  22. Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner P, Sinclair J, Poole E (2019) Monocytes latently infected with human cytomegalovirus evade neutrophil killing. iScience 12:13–26

    Article  CAS  Google Scholar 

  23. Lau B, Poole E, Krishna B, Sellart I, Wills MR, Murphy E, Sinclair J (2016) The expression of human cytomegalovirus MicroRNA MiR-UL148D during latent infection in primary myeloid cells inhibits Activin A-triggered secretion of IL-6. Sci Rep 6:31205

    Article  CAS  Google Scholar 

  24. Poole E, McGregor Dallas SR, Colston J, Joseph RS, Sinclair J (2011) Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34 progenitors. J Gen Virol 92(Pt 7):1539–1549

    Article  CAS  Google Scholar 

  25. Slobedman B, Mocarski ES (1999) Quantitative analysis of latent human cytomegalovirus. J Virol 73(6):4806–4812

    Article  CAS  Google Scholar 

  26. Nevels M, Paulus C, Shenk T (2004) Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A 101(49):17234–17239

    Article  CAS  Google Scholar 

  27. Groves IJ, Reeves MB, Sinclair JH (2009) Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic ‘pre-immediate-early’ repression of viral gene expression mediated by histone post-translational modification. J Gen Virol 90(Pt 10):2364–2374

    Article  CAS  Google Scholar 

  28. Reeves MB, Coleman H, Chadderton J, Goddard M, Sissons JG, Sinclair JH (2004) Vascular endothelial and smooth muscle cells are unlikely to be major sites of latency of human cytomegalovirus in vivo. J Gen Virol 85(Pt 11):3337–3341

    Article  CAS  Google Scholar 

  29. Omoto S, Mocarski ES (2013) Cytomegalovirus UL91 is essential for transcription of viral true late (gamma2) genes. J Virol 87(15):8651–8664

    Article  CAS  Google Scholar 

  30. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  Google Scholar 

  31. Poole E, Avdic S, Hodkinson J, Jackson S, Wills M, Slobedman B, Sinclair J (2014) Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. J Virol 88(24):13947–13955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poole, E., Groves, I., Jackson, S., Wills, M., Sinclair, J. (2021). Using Primary Human Cells to Analyze Human Cytomegalovirus Biology. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics