Skip to main content

PET Imaging of Type 5 Metabotropic Glutamate Receptors

  • Protocol
  • First Online:
Metabotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 164))

Abstract

This chapter describes the use of positron emission tomography (PET) for in vivo imaging of brain regional type 5 metabotropic glutamate (mGlu5) receptors. Two mGlu5 PET tracers have been well-validated, [11C]ABP688 and [18F]FPEB. They have been used, in laboratory animals and humans, to study diverse illnesses including Parkinson’s disease, Alzheimer’s disease, addictions, depression, and schizophrenia. The shorter half-life of [11C]ABP688 makes it easier to conduct multiple scans on the same day in the same participant. The longer half-life of 18F-labeled tracers allows its use in centers without an on-site production facility. Additional details about each tracer’s development, advantages, and disadvantages are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krishnamoorthy S, Schmall JP, Surti S (2017) PET physics and instrumentation, in basic science of PET imaging. Springer, New York, pp 173–197

    Book  Google Scholar 

  2. Christian P (2016) PET instrumentation. In: Waterstram-Rich KM, Gilmore D (eds) Nuclear medicine and PET/CT-E-Book: Technology and techniques. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  3. Derenzo SE (1986) Mathematical removal of positron range blurring in high resolution tomography. IEEE Trans Nucl Sci 33(1):565–569

    Article  Google Scholar 

  4. Langer O et al (2005) Combined PET and microdialysis for in vivo assessment of intracellular drug pharmacokinetics in humans. J Nucl Med 46(11):1835–1841

    CAS  PubMed  Google Scholar 

  5. Hall B et al (2017) In vivo tau PET imaging in dementia: pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev 36:50–63

    Article  CAS  PubMed  Google Scholar 

  6. Laruelle M (2012) Measuring dopamine synaptic transmission with molecular imaging and pharmacological challenges: The state of the art, in Molecular Imaging in the Clinical Neurosciences. Springer, New York, pp 163–203

    Google Scholar 

  7. Van Velden FH et al (2009) HRRT versus HR+ human brain PET studies: an interscanner test–retest study. J Nucl Med 50(5):693–702

    Article  PubMed  Google Scholar 

  8. Ametamey SM et al (2006) Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med 47:698–705

    CAS  PubMed  Google Scholar 

  9. Hintermann S et al (2007) ABP688, a novel selective and high affinity ligand for the labeling of mGlu5 receptors: identification, in vitro pharmacology, pharmacokinetic and biodistribution studies. Bioorg Med Chem 15(2):903–914

    Article  CAS  PubMed  Google Scholar 

  10. Wyss MT et al (2007) Quantitative evaluation of 11C-ABP688 as PET ligand for the measurement of the metabotropic glutamate receptor subtype 5 using autoradiographic studies and a beta-scintillator. NeuroImage 35(3):1086–1092

    Article  PubMed  Google Scholar 

  11. Kawamura K et al (2014) Binding potential of (E)-[11C]ABP688 to metabotropic glutamate receptor subtype 5 is decreased by the inclusion of its 11C-labelled Z-isomer. Nucl Med Biol 41(1):17–23

    Article  CAS  PubMed  Google Scholar 

  12. Smart K et al (2019) Effect of (Z)-isomer content on [11 C] ABP688 binding potential in humans. Eur J Nucl Med Mol Imaging 46(5):1175–1178

    Article  CAS  PubMed  Google Scholar 

  13. Bdair H et al (2019) Radiosynthesis of the diastereomerically pure (E)-[11C] ABP688. J Label Compd Radiopharm 62(12):860–864

    Article  CAS  Google Scholar 

  14. Elmenhorst D et al (2010) In vivo and in vitro validation of reference tissue models for the mGluR(5) ligand [(11)C]ABP688. J Cereb Blood Flow Metab 30:1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mathews WB et al (2014) Dose-dependent, saturable occupancy of the metabotropic glutamate subtype 5 receptor by fenobam as measured with [11C] ABP688 PET imaging. Synapse 68(12):565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ametamey SM et al (2007) Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med 48:247–252

    CAS  PubMed  Google Scholar 

  17. DeLorenzo C et al (2011) In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab 31(11):2169–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Treyer V et al (2007) Evaluation of the metabotropic glutamate receptor subtype 5 using PET and 11C-ABP688: assessment of methods. J Nucl Med 48(7):1207–1215

    Article  CAS  PubMed  Google Scholar 

  19. Kågedal M et al (2013) A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 - estimating occupancy in the absence of a reference region. NeuroImage 82:160–169

    Article  PubMed  CAS  Google Scholar 

  20. Milella M, et al. (2011) Human PET validation study of reference tissue models for the mGluR5 ligand [11C]ABP688. in 41st Annual Meeting of The Society for Neuroscience

    Google Scholar 

  21. Elmenhorst D et al (2012) Test-retest stability of cerebral mGluR5 quantification using [11C]ABP688 and positron emission tomography in rats. Synapse 66:552–560

    Article  CAS  PubMed  Google Scholar 

  22. Miyake N et al (2011) Imaging changes in glutamate transmission in vivo with the metabotropic glutamate receptor 5 tracer [11C] ABP688 and N-acetylcysteine challenge. Biol Psychiatry 69(9):822–824

    Article  CAS  PubMed  Google Scholar 

  23. Sandiego CM et al (2013) Studies of the metabotropic glutamate receptor 5 radioligand [11C]ABP688 with N-acetylcysteine challenge in rhesus monkeys. Synapse 67(8):489–501

    Article  CAS  PubMed  Google Scholar 

  24. DeLorenzo C et al (2011) In vivo positron emission tomography imaging with [11C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Molecul Imag 38(6):1083–1094

    Article  CAS  Google Scholar 

  25. DeLorenzo C et al (2017) In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [11C]ABP688 and [18F]FPEB. J Cereb Blood Flow Metab 37(8):2716–2727

    Article  CAS  PubMed  Google Scholar 

  26. Smart K et al (2018) Test–retest variability of [11C] ABP688 estimates of metabotropic glutamate receptor subtype 5 availability in humans. Synapse 72(9):e22041

    Article  PubMed  CAS  Google Scholar 

  27. Akkus F et al (2013) Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A 110:737–742

    Article  CAS  PubMed  Google Scholar 

  28. Smart K et al (2019) Sex differences in [11 C] ABP688 binding: a positron emission tomography study of mGlu5 receptors. Eur J Nucl Med Mol Imaging 46(5):1179–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deschwanden A et al (2011) Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatr 168(7):727–734

    Article  PubMed  Google Scholar 

  30. DuBois JM et al (2016) Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [(11)C]ABP688 PET. Eur J Nucl Med Mol Imaging 43:152–162

    Article  CAS  PubMed  Google Scholar 

  31. Leuzy A et al (2016) In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct 221(3):1387–1402

    Article  CAS  PubMed  Google Scholar 

  32. Hulka LM et al (2014) Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatry 19(5):625–632

    Article  CAS  PubMed  Google Scholar 

  33. Akkus F et al (2016) Association of Long-Term Nicotine Abstinence with Normal Metabotropic Glutamate Receptor-5 binding. Biol Psychiatry 79(6):474–480

    Article  CAS  PubMed  Google Scholar 

  34. Martinez D et al (2014) Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [(11)C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry 75(2):165–171

    Article  CAS  PubMed  Google Scholar 

  35. Milella M et al (2014) Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [(11)C]ABP688 study. NeuroImage 98:195–202

    Article  CAS  PubMed  Google Scholar 

  36. Cox SML et al (2020) mGlu5 receptor availability in youth at risk for addictions: effects of vulnerability traits and cannabis use. Neuropsychopharmacol 45(11):1817–1825

    Google Scholar 

  37. Akkus F et al (2018) Metabotropic glutamate receptor 5 binding in male patients with alcohol use disorder. Transl Psychiatry 8(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Esterlis I et al (2018) Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [11 C] ABP688 and PET imaging study in depression. Mol Psychiatry 23(4):824

    Article  CAS  PubMed  Google Scholar 

  39. Kim J-H et al (2019) In vivo metabotropic glutamate receptor 5 availability-associated functional connectivity alterations in drug-naïve young adults with major depression. Eur Neuropsychopharmacol 29(2):278–290

    Article  CAS  PubMed  Google Scholar 

  40. DeLorenzo C et al (2015) Characterization of brain mGluR5 binding in a pilot study of late-life major depressive disorder using positron emission tomography and [11C]ABP688. Transl Psychiatry Psychiatry 5:e693

    Article  CAS  Google Scholar 

  41. Wyckhuys T et al (2013) N-acetylcysteine- and MK-801-induced changes in glutamate levels do not affect in vivo binding of metabotropic glutamate 5 receptor radioligand 11C-ABP688 in rat brain. J Nucl Med 54(11):1954–1961

    Article  CAS  PubMed  Google Scholar 

  42. Zimmer ER et al (2015) Imaging in vivo glutamate fluctuations with [(11)C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab 35(7):1169–1174

    Article  CAS  PubMed  Google Scholar 

  43. DeLorenzo C et al (2015) In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptor subtype 5. Biol Psychiatry 77(3):266–275

    Article  CAS  PubMed  Google Scholar 

  44. Kosten L et al (2018) Acute ketamine infusion in rat does not affect in vivo [11C] ABP688 binding to metabotropic glutamate receptor subtype 5. Mol Imaging 17:1536012118788636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hefti K et al (2013) Increased metabotropic glutamate receptor subtype 5 availability in human brain after one night without sleep. Biol Psychiatry 73:161–168

    Article  CAS  PubMed  Google Scholar 

  46. Elmenhorst D et al (2016) Circadian variation of metabotropic glutamate receptor 5 availability in the rat brain. J Sleep Res 25(6):754–761

    Article  PubMed  Google Scholar 

  47. Castaneda TR et al (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res 36(3):177–185

    Article  CAS  PubMed  Google Scholar 

  48. de Prado M (2000) B., et al., melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the awake rat: a microdialysis study. J Pineal Res 29(4):209–216

    Article  Google Scholar 

  49. Grove-Strawser D, Boulware MI, Mermelstein PG (2010) Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience 170(4):1045–1055

    Article  CAS  PubMed  Google Scholar 

  50. Hamill TG et al (2005) Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse (New York, NY) 56:205–216

    Article  CAS  Google Scholar 

  51. Wang J-Q et al (2007) Synthesis and preliminary biological evaluation of 3-[(18)F]fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5. Synapse (New York, NY) 61:951–961

    Article  CAS  Google Scholar 

  52. Park E et al (2015) Test-retest reproducibility of the metabotropic glutamate receptor 5 ligand [18F]FPEB with bolus plus constant infusion in humans. Eur J Nucl Med Mol Imaging 42:1530–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Laat B et al (2015) Preclinical evaluation and quantification of 18F-FPEB as a Radioligand for PET imaging of the metabotropic glutamate receptor 5. J Nucl Med 56:1954–1959

    Article  PubMed  CAS  Google Scholar 

  54. Arsenault D et al (2014) Hypo-anxious phenotype of adolescent offspring prenatally exposed to LPS is associated with reduced mGluR5 expression in hippocampus. Open J Med Psychol 3:202–211

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brownell A-L et al (2015) PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflammation 12:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Choi J-K et al (2015) Combined behavioral studies and in vivo imaging of inflammatory response and expression of mGlu5 receptors in schnurri-2 knockout mice. Neurosci Lett 609:159–164

    Article  CAS  PubMed  Google Scholar 

  57. Rook JM et al (2015) Relationship between in vivo receptor occupancy and efficacy of metabotropic glutamate receptor subtype 5 allosteric modulators with different in vitro binding profiles. Neuropsychopharmacology 40:755–765

    Article  CAS  PubMed  Google Scholar 

  58. Wong DF et al (2013) 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med 54:388–396

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan JM et al (2013) Kinetic analysis of the metabotropic glutamate subtype 5 tracer [(18)F]FPEB in bolus and bolus-plus-constant-infusion studies in humans. J Cereb Blood Flow Metab 33:532–541

    Article  CAS  PubMed  Google Scholar 

  60. Lohith TG et al (2017) Comparison of two PET radioligands, [(11)C]FPEB and [(11)C]SP203, for quantification of metabotropic glutamate receptor 5 in human brain. J Cereb Blood Flow Metab 37:2458–2470

    Article  CAS  PubMed  Google Scholar 

  61. Leurquin-Sterk G et al (2016) Kinetic modeling and long-term test-retest reproducibility of the mGluR5 PET tracer 18F-FPEB in human brain. Synapse (New York, NY) 70:153–162

    Article  CAS  Google Scholar 

  62. Holmes SE et al (2017) Altered metabotropic glutamate receptor 5 markers in PTSD: in vivo and postmortem evidence. Proc Natl Acad Sci 114(31):8390–8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davis MT et al (2019) In vivo evidence for dysregulation of mGluR5 as a biomarker of suicidal ideation. Proc Natl Acad Sci 116(23):11490–11495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang Y et al (2019) 18F-FPEB PET/CT shows mGluR5 Upregulation in Parkinson’s disease. J Neuroimaging 29(1):97–103

    Article  PubMed  Google Scholar 

  65. Fatemi SH et al (2018) Metabotropic glutamate receptor 5 tracer [18 F]-FPEB displays increased binding potential in postcentral gyrus and cerebellum of male individuals with autism: a pilot PET study. Cerebellum Ataxias 5(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leurquin-Sterk G et al (2018) Cerebral dopaminergic and glutamatergic transmission relate to different subjective responses of acute alcohol intake: an in vivo multimodal imaging study. Addict Biol 23(3):931–944

    Article  CAS  PubMed  Google Scholar 

  67. Leurquin-Sterk G et al (2018) Lower limbic metabotropic glutamate receptor 5 availability in alcohol dependence. J Nucl Med 59:682–690

    Article  CAS  PubMed  Google Scholar 

  68. Abdallah CG et al (2017) Metabotropic glutamate receptor 5 and glutamate involvement in major depressive disorder: a multimodal imaging study. Biol Psychiat Cognit Neurosci Neuroimaging 2(5):449–456

    Article  Google Scholar 

  69. Siméon FG et al (2007) Synthesis and simple 18F-labeling of 3-fluoro-5-(2-(2-(fluoromethyl) thiazol-4-yl) ethynyl) benzonitrile as a high affinity radioligand for imaging monkey brain metabotropic glutamate subtype-5 receptors with positron emission tomography. J Med Chem 50(14):3256–3266

    Article  PubMed  CAS  Google Scholar 

  70. Wanger-Baumann CA et al (2011) In vitro and in vivo evaluation of [18F]-FDEGPECO as a PET tracer for imaging the metabotropic glutamate receptor subtype 5 (mGluR5). NeuroImage 56:984–991

    Article  CAS  PubMed  Google Scholar 

  71. Brown AK et al (2008) Metabotropic glutamate subtype 5 receptors are quantified in the human brain with a novel radioligand for PET. J Nucl Med 49:2042–2048

    Article  PubMed  Google Scholar 

  72. Kimura Y et al (2010) Biodistribution and radiation dosimetry of a positron emission tomographic ligand, 18F-SP203, to image metabotropic glutamate subtype 5 receptors in humans. Eur J Nucl Med Mol Imaging 37:1943–1949

    Article  PubMed  PubMed Central  Google Scholar 

  73. Siméon FG et al (2012) Synthesis and characterization in monkey of [11C]SP203 as a radioligand for imaging brain metabotropic glutamate 5 receptors. Eur J Nucl Med Mol Imaging 39:1949–1958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sephton SM et al (2015) Preclinical evaluation and test–retest studies of [18F] PSS232, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging 42(1):128–137

    Article  CAS  PubMed  Google Scholar 

  75. Warnock G et al (2018) A first-in-man PET study of [18F] PSS232, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5. Eur J Nucl Med Mol Imaging 45:1041–1051

    Article  CAS  PubMed  Google Scholar 

  76. Akkus F et al (2017) Metabotropic glutamate receptor 5 neuroimaging in schizophrenia. Schizophr Res 183:95–101

    Article  PubMed  Google Scholar 

  77. DuBois JM et al (2016) Metabotropic glutamate receptor type 5 (mGluR5) cortical abnormalities in focal cortical dysplasia identified in vivo with [11C]ABP688 positron-emission tomography (PET) imaging. Cereb Cortex 26(11):4170–4179

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lam J et al (2019) In vivo mGluR5 abnormalities localize the epileptogenic zone in mesial TLE. Ann Neurol 85(2):218–228

    Article  CAS  PubMed  Google Scholar 

  79. Akkus F et al (2014) Metabotropic glutamate receptor 5 binding in patients with obsessive-compulsive disorder. Int J Neuropsychopharmacol 17(12):1915–1922

    Google Scholar 

  80. Leurquin-Sterk G et al (2016) Positive association between limbic metabotropic glutamate receptor 5 availability and novelty-seeking temperament in humans: An 18F-FPEB PET study. J Nucl Med 57(11):1746–1752

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Leyton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scala, S.G., Smart, K., Cox, S.M.L., Benkelfat, C., Leyton, M. (2021). PET Imaging of Type 5 Metabotropic Glutamate Receptors. In: Olive, M.F., Burrows, B.T., Leyrer-Jackson, J.M. (eds) Metabotropic Glutamate Receptor Technologies. Neuromethods, vol 164. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1107-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1107-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1106-7

  • Online ISBN: 978-1-0716-1107-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics