Skip to main content

Reprogramming Porcine Fibroblast to EPSCs

  • Protocol
  • First Online:
Nuclear Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2239))

Abstract

The development of porcine expanded potential stem cells (pEPSCs) provides an invaluable tool for investigation of porcine stem cell pluripotency and opens a venue for research in biotechnology, agriculture, and regenerative medicine. Since the derivation of pEPSC from porcine pre-implantation embryos has been demanding in resource supply and technical challenges, it is more feasible and convenient for most laboratories to derive this new type of porcine stem cells by reprogramming somatic cells. In this chapter, we describe the detailed procedures for reprogramming porcine fetal fibroblast cells to EPSCiPSC with the eight reprogramming factors cloned on the piggyBac vectors followed by a selection for pluripotent cells independent of transgene expression using the EPSC media. This technique allows the generation of pEPSCs for stem cell research, genome editing, biotechnology, and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264):1101–1104. https://doi.org/10.1126/science.aad1191

    Article  CAS  PubMed  Google Scholar 

  2. Niu D, Wei HJ, Lin L, George H, Wang T, Lee H, Zhao HY, Wang Y, Kan YN, Shrock E, Lesha E, Wang G, Luo YL, Qing YB, Jiao DL, Zhao H, Zhou XY, Wang SQ, Wei H, Guell M, Church GM, Yang LH (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307. https://doi.org/10.1126/science.aan4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C, Yang H, Li L, Liu Q, Shi H, Xu G, Zhao H, Wei H, Pei Z, Li S, Lai L, Li XJ (2018) A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173(4):989–1002, e1013. https://doi.org/10.1016/j.cell.2018.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, Kannappan R, Borovjagin AV, Walcott GP, Pollard AE, Fast VG, Hu X, Lloyd SG, Ge Y, Zhang J (2018) Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137(16):1712–1730. https://doi.org/10.1161/CIRCULATIONAHA.117.030785

    Article  PubMed  Google Scholar 

  5. Ezashi T, Yuan Y, Roberts RM (2016) Pluripotent stem cells from domesticated mammals. Annu Rev Anim Biosci 4:223. https://doi.org/10.1146/annurev-animal-021815-111202

    Article  CAS  PubMed  Google Scholar 

  6. Shiue YL, Yang JR, Liao YJ, Kuo TY, Liao CH, Kang CH, Tai C, Anderson GB, Chen LR (2016) Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology 86(1):176–181. https://doi.org/10.1016/j.theriogenology.2016.04.030

    Article  PubMed  Google Scholar 

  7. Brevini TA, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F (2010) Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev Rep 6(3):484–495. https://doi.org/10.1007/s12015-010-9153-2

    Article  CAS  PubMed  Google Scholar 

  8. Vassiliev I, Vassilieva S, Beebe LF, Harrison SJ, McIlfatrick SM, Nottle MB (2010) In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram 12(2):223–230. https://doi.org/10.1089/cell.2009.0053

    Article  CAS  PubMed  Google Scholar 

  9. Haraguchi S, Kikuchi K, Nakai M, Tokunaga T (2012) Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J Reprod Dev 58(6):707–716. https://doi.org/10.1262/jrd.2012-008

    Article  CAS  PubMed  Google Scholar 

  10. Hou DR, Jin Y, Nie XW, Zhang ML, Ta N, Zhao LH, Yang N, Chen Y, Wu ZQ, Jiang HB, Li YR, Sun QY, Dai YF, Li RF (2016) Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci Rep 6:25838. https://doi.org/10.1038/srep25838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xue B, Li Y, He Y, Wei R, Sun R, Yin Z, Bou G, Liu Z (2016) Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS One 11(3):e0151737. https://doi.org/10.1371/journal.pone.0151737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma Y, Yu T, Cai Y, Wang H (2018) Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov 4:21. https://doi.org/10.1038/s41420-017-0015-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen ACH, Eckersley-Maslin MA, Ahmad S, Lee YL, Kobayashi T, Ryan D, Zhong J, Zhu J, Wu J, Lan G, Petkov S, Yang J, Antunes L, Campos LS, Fu B, Wang S, Yong Y, Wang X, Xue SG, Ge L, Liu Z, Huang Y, Nie T, Li P, Wu D, Pei D, Zhang Y, Lu L, Yang F, Kimber SJ, Reik W, Zou X, Shang Z, Lai L, Surani A, Tam PPL, Ahmed A, Yeung WSB, Teichmann SA, Niemann H, Liu P (2019) Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 21(6):687–699. https://doi.org/10.1038/s41556-019-0333-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by Seed fund from Southern Medical University to X.G., and P.L. is supported by GRF 17127219.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefei Gao or Pentao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, X., Ruan, D., Liu, P. (2021). Reprogramming Porcine Fibroblast to EPSCs. In: Hu, K. (eds) Nuclear Reprogramming. Methods in Molecular Biology, vol 2239. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1084-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1084-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1083-1

  • Online ISBN: 978-1-0716-1084-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics