Skip to main content

Assessing the Bone-Forming Potential of Pericytes

  • Protocol
  • First Online:
Pericytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2235))

Abstract

Human pericytes are a perivascular cell population with mesenchymal stem cell properties, present in all vascularized tissues. Human pericytes have a distinct immunoprofile, which may be leveraged for purposes of cell purification. Adipose tissue is the most commonly used cell source for human pericyte derivation. Pericytes can be isolated by FACS (fluorescence-activated cell sorting), most commonly procured from liposuction aspirates. Pericytes have clonal multilineage differentiation potential, and their potential utility for bone regeneration has been described across multiple animal models. The following review will discuss in vivo methods for assessing the bone-forming potential of purified pericytes. Potential models include (1) mouse intramuscular implantation, (2) mouse calvarial defect implantation, and (3) rat spinal fusion models. In addition, the presented surgical protocols may be used for the in vivo analysis of other osteoprogenitor cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96(9):930–938

    Article  CAS  Google Scholar 

  2. Doherty MJ, Canfield AE (1999) Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr 9(1):1–17

    Article  CAS  Google Scholar 

  3. Farrington-Rock C et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232

    Article  CAS  Google Scholar 

  4. Invernici G et al (2007) Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. Am J Pathol 170(6):1879–1892

    Article  CAS  Google Scholar 

  5. Howson KM et al (2005) The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol 289(6):C1396–C1407

    Article  CAS  Google Scholar 

  6. Covas DT et al (2005) Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res 309(2):340–344

    Article  CAS  Google Scholar 

  7. Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  Google Scholar 

  8. Murray IR et al (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71(8):1353–1374

    Article  CAS  Google Scholar 

  9. Meyers CA et al (2018) Pericytes for therapeutic bone repair. Adv Exp Med Biol 1109:21–32

    Article  CAS  Google Scholar 

  10. James AW et al (2017) Pericytes for the treatment of orthopedic conditions. Pharmacol Ther 171:93–103

    Article  CAS  Google Scholar 

  11. James AW, Peault B (2019) Perivascular mesenchymal progenitors for bone regeneration. J Orthop Res 37(6):1221–1228

    Article  Google Scholar 

  12. Zhang X et al (2011) The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A 17(19-20):2497–2509

    Article  CAS  Google Scholar 

  13. James AW et al (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1(6):510–519

    Article  CAS  Google Scholar 

  14. Askarinam A et al (2013) Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A 19(11-12):1386–1397

    Article  CAS  Google Scholar 

  15. Wang Y et al (2020) PDGFRalpha marks distinct perivascular populations with different osteogenic potential within adipose tissue. Stem Cells 38(2):276–290

    CAS  PubMed  Google Scholar 

  16. Chung CG et al (2014) Human perivascular stem cell-based bone graft substitute induces rat spinal fusion. Stem Cells Transl Med 3(10):1231–1241

    Article  CAS  Google Scholar 

  17. Lee S et al (2015) Brief report: human perivascular stem cells and Nel-like Protein-1 synergistically enhance spinal fusion in osteoporotic rats. Stem Cells 33(10):3158–3163

    Article  CAS  Google Scholar 

  18. Tawonsawatruk T et al (2016) Adipose derived pericytes rescue fractures from a failure of healing—non-union. Sci Rep 6:22779

    Article  CAS  Google Scholar 

  19. Wang Y et al (2019) Relative contributions of adipose-resident CD146(+) pericytes and CD34(+) adventitial progenitor cells in bone tissue engineering. NPJ Regen Med 4:1

    Article  Google Scholar 

  20. Corselli M et al (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308

    Article  CAS  Google Scholar 

  21. Corselli M et al (2013) Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A 83(8):714–720

    Article  Google Scholar 

  22. James AW et al (2012) An abundant perivascular source of stem cells for bone tissue engineering. Stem Cells Transl Med 1(9):673–684

    Article  CAS  Google Scholar 

  23. West CC et al (2016) Prospective purification of perivascular presumptive mesenchymal stem cells from human adipose tissue: process optimization and cell population metrics across a large cohort of diverse demographics. Stem Cell Res Ther 7:47

    Article  CAS  Google Scholar 

  24. Xu J et al (2020) Comparison of skeletal and soft tissue pericytes identifies CXCR4+ bone forming mural cells in human tissues. Bone Res 8:22

    Article  CAS  Google Scholar 

  25. James AW et al (2012) Use of human perivascular stem cells for bone regeneration. J Vis Exp 63:e2952

    Google Scholar 

  26. Lo DD et al (2012) Repair of a critical-sized calvarial defect model using adipose-derived stromal cells harvested from lipoaspirate. J Vis Exp 68:4221

    Google Scholar 

  27. James AW et al (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1(6):510–519

    Article  CAS  Google Scholar 

  28. Spicer PP et al (2012) Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc 7(10):1918–1929

    Article  CAS  Google Scholar 

  29. Lee S et al (2015) hPSCs and NELL-1 synergistically enhance spinal fusion in osteoporotic rats. Stem Cells 33(10):3158–3163

    Article  CAS  Google Scholar 

  30. Zhang X et al (2011) The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A 17(19-20):2497–2509

    Article  CAS  Google Scholar 

  31. Levi B et al (2011) Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells 29(8):1241–1255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.W.J. was supported by the NIH/NIAMS (R01 AR070773, K08 AR068316), NIH/NIDCR (R21 DE027922), Department of Defense (W81XWH-18-1-0121, W81XWH-18-1-0336, W81XWH-18-10613), American Cancer Society (Research Scholar Grant, RSG-18-027-01-CSM), the Maryland Stem Cell Research Foundation, MTF Biologics, and Novadip. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, Department of Defense, or U.S. Army.

Disclosures: K.T, B.P, and C.S. are inventors of PSC-related patents filed from UCLA. A.W.J. is a paid consultant for Novadip. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron W. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meyers, C.A. et al. (2021). Assessing the Bone-Forming Potential of Pericytes. In: PĂ©ault, B.M. (eds) Pericytes. Methods in Molecular Biology, vol 2235. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1056-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1056-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1055-8

  • Online ISBN: 978-1-0716-1056-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics