Skip to main content

Imaging Pericytes and the Regulation of Cerebral Blood Flow

  • Protocol
  • First Online:
Pericytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2235))

Abstract

The brain’s high energy requirements drive the need for close coupling of local neuronal activity to blood supply. Capillaries have been shown to dilate before arterioles in response to sensory stimulation, pointing to a key role for microvascular pericytes in mediating cerebrovascular dynamics. However, many aspects of these cells’ function remain unknown and even controversial, from their identification, to the mechanism and regulation of their contractility in physiology and disease. Investigating how pericytes regulate vascular diameter is therefore likely to be the subject of many future experiments. Here we provide protocols for three different techniques (ex vivo slice imaging, in vivo imaging, and immunohistochemistry) that are highly valuable for performing such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bicher HI, Reneau DD, Bruley DF, Knisely MH (1973) Brain oxygen supply and neuronal activity under normal and hypoglycemic conditions. Am J Phys 224(2):275–282. http://ajplegacy.physiology.org/content/224/2/275.abstract. Accessed May 2, 2016

    Article  CAS  Google Scholar 

  2. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sokoloff L (1960) The metabolism of the central nervous system in vivo. In: Handbook of Physiology, Section I, Neurophysiology, vol 3. The Williams & Wilkins co., Philadelphia, pp 1843–1864

    Google Scholar 

  4. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145. https://doi.org/10.1097/00004647-200110000-00001

    Article  CAS  PubMed  Google Scholar 

  5. Hall C, Howarth C, Kurth-Nelson Z, Mishra A (2016) Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience. Philos Trans R Soc Lond B Biol Sci 371:20150348

    Article  Google Scholar 

  6. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243. https://doi.org/10.1038/nature09613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lecrux C, Hamel E (2016) Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci 371(1705):20150350

    Article  Google Scholar 

  8. Lacroix A, Toussay X, Anenberg E et al (2015) COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J Neurosci 35(34):11791–11810. https://doi.org/10.1523/JNEUROSCI.0651-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456(7223):745–749. https://doi.org/10.1038/nature07525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhlirova H, Kılıç K, Tian P et al (2016) Cell type specificity of neurovascular coupling in cerebral cortex. Elife 5:e14315. https://doi.org/10.7554/eLife.14315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Filosa JA, Bonev AD, Straub SV et al (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9(11):1397–1403. https://doi.org/10.1038/nn1779

    Article  CAS  PubMed  Google Scholar 

  12. Howarth C (2014) The contribution of astrocytes to the regulation of cerebral blood flow. Front Neurosci 8:103. https://doi.org/10.3389/fnins.2014.00103

    Article  PubMed  PubMed Central  Google Scholar 

  13. Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2016) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323:96–109. https://doi.org/10.1016/j.neuroscience.2015.03.064

    Article  CAS  PubMed  Google Scholar 

  14. Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol 203(1):47–59. https://doi.org/10.1111/j.1748-1716.2011.02256.x

    Article  CAS  Google Scholar 

  15. Enager P, Piilgaard H, Offenhauser N et al (2009) Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. J Cereb Blood Flow Metab 29(5):976–986. https://doi.org/10.1038/jcbfm.2009.23

    Article  CAS  PubMed  Google Scholar 

  16. Webb RC (2003) Smooth muscle contraction and relaxation. Adv Physiol Educ 27(1–4):201–206. http://www.ncbi.nlm.nih.gov/pubmed/14627618. Accessed October 3, 2016

    Article  Google Scholar 

  17. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: A component of neurovascular coupling in health and disease. Front Neuroenergetics 2:5. https://doi.org/10.3389/fnene.2010.00005

    Article  PubMed  PubMed Central  Google Scholar 

  18. Longden TA, Hill-Eubanks DC, Nelson MT (2015) Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 36(3):0271678X15616138. https://doi.org/10.1177/0271678X15616138

    Article  CAS  Google Scholar 

  19. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704. https://doi.org/10.1038/nature05193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hall CN, Reynell C, Gesslein B et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60. https://doi.org/10.1038/nature13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455. https://doi.org/10.1177/0271678X15610340

    Article  CAS  PubMed  Google Scholar 

  22. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the Normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary Pericytes. Neuron 87(1):95–110. https://doi.org/10.1016/j.neuron.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zimmermann KW (1923) Der feinere Bau der Blutcapillaren. Z Anat Entwicklungsgesch 68(1):29–109. https://doi.org/10.1007/BF02593544

    Article  Google Scholar 

  24. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10. https://doi.org/10.1002/glia.20898

    Article  PubMed  Google Scholar 

  25. Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY (2015) Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2(4):41402. https://doi.org/10.1117/1.NPh.2.4.041402

    Article  Google Scholar 

  26. Mishra A, O’Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D (2014) Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 9(2):323–336. https://doi.org/10.1038/nprot.2014.019

    Article  CAS  PubMed  Google Scholar 

  27. Kim KJ, Filosa JA (2012) Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. J Physiol 590(7):1757–1770. https://doi.org/10.1113/jphysiol.2011.222778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim KJ, Iddings JA, Stern JE et al (2015) Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction. J Neurosci 35(21):8245–8257. https://doi.org/10.1523/JNEUROSCI.4486-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465. https://doi.org/10.1038/307462a0

    Article  CAS  PubMed  Google Scholar 

  30. Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59(3):560–573. https://doi.org/10.1016/S0006-3495(91)82272-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23(9):1261–1276. https://doi.org/10.1002/neu.480230915

    Article  CAS  PubMed  Google Scholar 

  32. Ting JT, Daigle TL, Chen Q, Feng G (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol 1183:221–242. https://doi.org/10.1007/978-1-4939-1096-0_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hille B (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol 58:599–619

    Article  CAS  Google Scholar 

  34. MacGregor DG, Chesler M, Rice ME (2001) HEPES Prevents Edema in Rat Brain Slices. Neurosci Lett 303:141–144. https://doi.org/10.1016/S0304-3940(01)01690-1

    Article  CAS  PubMed  Google Scholar 

  35. Peça J, Feliciano C, Ting JT et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442. https://doi.org/10.1038/nature09965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brain Slice Methods. (2016). http://www.brainslicemethods.com/#!protective-recovery-method/c1uf. Accessed May 3, 2016

  37. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157. https://doi.org/10.1242/dev.004895

    Article  CAS  PubMed  Google Scholar 

  38. Stallcup WB (2002) The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31(6–7):423–435. https://doi.org/10.1023/A:1025731428581

    Article  CAS  PubMed  Google Scholar 

  39. Lund-Andersen H, Hertz L (1970) Effects of potassium and of glutamate on swelling and on sodium and potassium content in brain-cortex slices from adult rats. Exp Brain Res 11(2):199–212. https://doi.org/10.1007/BF00234323

    Article  CAS  PubMed  Google Scholar 

  40. Li K (2008) The image stabilizer plugin for ImageJ. http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html. Accessed August 19, 2016

  41. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41. https://doi.org/10.1109/83.650848

    Article  CAS  PubMed  Google Scholar 

  42. Tseng Q, Wang I, Duchemin-Pelletier E et al (2011) A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11(13):2231. https://doi.org/10.1039/c0lc00641f

    Article  CAS  PubMed  Google Scholar 

  43. Schechner JS, Braverman IM (1992) Synchronous vasomotion in the human cutaneous microvasculature provides evidence for central modulation. Microvasc Res 44(1):27–32. https://doi.org/10.1016/0026-2862(92)90099-B

    Article  CAS  PubMed  Google Scholar 

  44. Kleinfeld D, Mitra PP, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95(26):15741–15746. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=28114&tool=pmcentrez&rendertype=abstract. Accessed May 5, 2016

    Article  CAS  Google Scholar 

  45. Berg-Johnsen J, Langmoen IA (1992) The effect of isoflurane on excitatory synaptic transmission in the rat hippocampus. Acta Anaesthesiol Scand 36(4):350–355. https://doi.org/10.1111/j.1399-6576.1992.tb03480.x

    Article  CAS  PubMed  Google Scholar 

  46. Helmchen F, Kleinfeld D (2008) In Vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy. Methods Enzymol 444:231–254. https://doi.org/10.1016/S0076-6879(08)02810-3

    Article  PubMed  Google Scholar 

  47. Summers PM, Taylor ZJ, Shih AY (2014) Two-photon imaging of cerebral Vasodynamics in awake mice during health and disease. In: Weigert R (ed) Advances in intravital microscopy. Springer Netherlands, Vol Dordrecht, pp 25–43. https://doi.org/10.1007/978-94-017-9361-2

    Chapter  Google Scholar 

  48. Drew PJ, Shih AY, Driscoll JD et al (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7(12):981–984. https://doi.org/10.1038/nmeth.1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu H-T, Pan F, Yang G, Gan W-B (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5):549–551. https://doi.org/10.1038/nn1883

    Article  CAS  PubMed  Google Scholar 

  50. Klohs J, Rudin M, Shimshek DR, Beckmann N (2014) Imaging of cerebrovascular pathology in animal models of Alzheimer’s disease. Front Aging Neurosci 6:32. https://doi.org/10.3389/fnagi.2014.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4(8):1128–1144. https://doi.org/10.1038/nprot.2009.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldey GJ, Roumis DK, Glickfeld LL et al (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9(11):2515–2538. https://doi.org/10.1038/nprot.2014.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. LASA (2010) Guiding Principles for Preparing for and Undertaking Aseptic Surgery. A report by the LASA Education, Training and Ethics section. (M. Jennings and M. Berdoy eds.). http://www.lasa.co.uk/publications.html

  54. LeMoine DM, Bergdall VK, Freed C (2015) Performance analysis of exam gloves used for aseptic rodent surgery. J Am Assoc Lab Anim Sci 54(3):311–316. http://www.ncbi.nlm.nih.gov/pubmed/26045458. Accessed August 22, 2016

    PubMed  PubMed Central  Google Scholar 

  55. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, Mobile Mice. Neuron 56(1):43–57. https://doi.org/10.1016/j.neuron.2007.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mostany R, Portera-Cailliau C (2008) A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp 12:678. https://doi.org/10.3791/678

    Article  Google Scholar 

  57. Shih AY, Driscoll JD, Pesavento MJ, Kleinfeld D (2014) Two-photon microscopy to measure blood flow and concurrent brain cell activity. In: Weber B, Helmchen F (eds) Optical Imaging of Neocrotical Dynamics, Neuromethods, vol 85. Humana Press, Totowa, NJ, pp 273–290. https://doi.org/10.1007/978-1-62703-785-3

    Chapter  Google Scholar 

  58. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309. https://doi.org/10.1038/jcbfm.2011.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santisakultarm TP, Cornelius NR, Nishimura N et al (2012) In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice. Am J Physiol Heart Circ Physiol 302(7):H1367–H1377. https://doi.org/10.1152/ajpheart.00417.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nizar K, Uhlirova H, Tian P et al (2013) In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci 33(19):8411–8422. https://doi.org/10.1523/JNEUROSCI.3285-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao Y-R, Drew PJ (2014) Determination of vessel cross-sectional area by thresholding in radon space. J Cereb Blood Flow Metab 34(7):1180–1187. https://doi.org/10.1038/jcbfm.2014.67

    Article  PubMed  PubMed Central  Google Scholar 

  62. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  63. Káradóttir R, Attwell D (2006) Combining patch-clamping of cells in brain slices with immunocytochemical labeling to define cell type and developmental stage. Nat Protoc 1(4):1977–1986. https://doi.org/10.1038/nprot.2006.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sicard K, Shen Q, Brevard ME et al (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23(4):472–481. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2989608&tool=pmcentrez&rendertype=abstract. Accessed May 5, 2016

    Article  CAS  Google Scholar 

  65. Kapinya KJ, Prass K, Dirnagl U (2002) Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism? Neuroreport 13(11):1431–1435. http://www.ncbi.nlm.nih.gov/pubmed/12167768. Accessed May 5, 2016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Physiological Society, the Royal Society, and the University of Sussex Junior Research Associate scheme. We would like to thank Devin Clarke and Orla Bonnar for comments on the manuscript, David Attwell for providing the NG2/DsRed mice to start our colony, and Leon Lagnado for practical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine N. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boyd, K., Hammond-Haley, M., Vroman, R., Hall, C.N. (2021). Imaging Pericytes and the Regulation of Cerebral Blood Flow. In: PĂ©ault, B.M. (eds) Pericytes. Methods in Molecular Biology, vol 2235. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1056-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1056-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1055-8

  • Online ISBN: 978-1-0716-1056-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics