Skip to main content

Drug Delivery Approaches and Imaging Techniques for Brain Tumor

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Part of the book series: Neuromethods ((NM,volume 163))

Abstract

Brain tumor is an abnormal growth of tissue in the CNS that can interrupt the brain function and proved challenging to treat, largely owing to the biological characteristics which often conspire to limit progress. These tumors are located in one of the body’s most crucial organs and often beyond the reach due to BBB. The transport of substances across the BBB is strictly limited through both physical specialized connections (tight junctions) and metabolic barriers (enzymes and transport systems). Therefore, therapeutics have to pass through BBB before reaching the targeted sites in the brain tumor. This book chapter covered the types of brain tumors based on the diagnosis, strategies to improve the accumulation of anticancer drugs in the brain and brain tumor imaging. Numerous drug delivery approaches such as nanotechnology, focused ultrasound, hyperthermia, enhanced permeability and retention (EPR) effect, cell-penetrating peptides (CPP), ligand-mediated delivery, etc. have been discussed briefly to overcome the BBB and its advantages and limitations including other delivery system such as vaccines, stem cell therapy, etc. However, the main focus of this book chapter is on nanoparticle-based drug delivery system to overcome major obstacle in current brain cancer treatments. The different groups of nanoparticles that have been modified for brain tumor targeted drug delivery and brain targeted imaging have been discussed. Advances in these techniques suggest optimism for the future management of glioblastoma. Indeed, no single strategy is powerful enough to offer a substantial breakthrough for glioma treatment, so the future application of combined efforts and therapeutic agents might lead to a successful resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, Jones DTW, Joyce JA, Kearns P, Kieran MW, Mellinghoff IK, Merchant M, Pfister SM, Pollard SM, Ramaswamy V, Rich JN, Robinson GW, Rowitch DH, Sampson JH, Taylor MD, Workman P, Gilbertson RJ (2019) Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16(8):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agrahari V (2017) The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches. Neural Regen Res 12(2):197–200

    Article  PubMed  PubMed Central  Google Scholar 

  3. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524(18):3865–3895

    Article  Google Scholar 

  4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  5. Gutkin A, Cohen ZR, Peer D (2016) Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opin Drug Deliv 13(11):1573–1582

    Article  CAS  PubMed  Google Scholar 

  6. Woodworth GF, Dunn GP, Nance EA, Hanes J, Brem H (2014) Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:126–126

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pourgholi F, Hajivalili M, Farhad J-N, Kafil HS, Yousefi M (2016) Nanoparticles: Novel vehicles in treatment of Glioblastoma. Biomed Pharmacother 77:98–107

    Article  CAS  PubMed  Google Scholar 

  8. John Lin C-C, Yu K, Hatcher A, Huang T-W, Lee HK, Carlson J, Weston MC, Chen F, Zhang Y, Zhu W, Mohila CA, Ahmed N, Patel AJ, Arenkiel BR, Noebels JL, Creighton CJ, Deneen B (2017) Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 20(3):396–405

    Article  CAS  PubMed  Google Scholar 

  9. Jaeckle KA (2014) Oligodendroglial Tumors. Semin Oncol 41(4):468–477

    Article  PubMed  Google Scholar 

  10. Wirsching H-G, Galanis E, Weller M (2016) Chapter 23 - Glioblastoma. In: Berger MS, Weller M (eds) Handb Clin Neurol. Elsevier, Amsterdam, pp 381–397

    Google Scholar 

  11. Rudà R, Reifenberger G, Frappaz D, Pfister SM, Laprie A, Santarius T, Roth P, Tonn JC, Soffietti R, Weller M, Moyal EC-J (2017) EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-Oncology 20(4):445–456

    Article  PubMed Central  Google Scholar 

  12. Dahiya S, Perry A (2010) Pineal tumors. Adv Anat Pathol 17(6):419–427

    Article  PubMed  Google Scholar 

  13. Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, Vecht C (2008) Meningioma. Crit Rev Oncol Hematol 67(2):153–171

    Article  PubMed  Google Scholar 

  14. Fox BD, Cheung VJ, Patel AJ, Suki D, Rao G (2011) Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 22(1):1–6

    Article  PubMed  Google Scholar 

  15. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57

    Article  CAS  PubMed  Google Scholar 

  16. Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q (2014) Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 9:2241–2257

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hladky SB, Barrand MA (2018) Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 15(1):30–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-brain delivery methods using nanotechnology. Pharmaceutics 10(4):269

    Article  CAS  PubMed Central  Google Scholar 

  19. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12

    Article  PubMed  Google Scholar 

  20. Meng J, Agrahari V, Youm I (2017) Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of Nanobiotechnology. J Neuroimmune Pharmacol 12(1):84–98

    Article  PubMed  Google Scholar 

  21. Sun C, Ding Y, Zhou L, Shi D, Sun L, Webster TJ, Shen Y (2017) Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine 13(8):2605–2621

    Article  CAS  PubMed  Google Scholar 

  22. Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood–brain barrier. Nanomedicine 7(8):1225–1233

    Article  CAS  PubMed  Google Scholar 

  23. Chu P-C, Chai W-Y, Tsai C-H, Kang S-T, Yeh C-K, Liu H-L (2016) Focused ultrasound-induced blood-brain barrier opening: association with mechanical index and cavitation index analyzed by dynamic contrast-enhanced magnetic-resonance imaging. Sci Rep 6:33264–33264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jena L, McErlean E, McCarthy H (2019) Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res 10(2):304–318

    Article  PubMed Central  Google Scholar 

  25. Zhang F, Xu C-L, Liu C-M (2015) Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des Devel Ther 9:2089–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  27. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  PubMed  Google Scholar 

  28. Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, Zhang Y, Webster TJ, Sun C, Shen Y (2018) Acid-induced activated cell-penetrating peptide-modified cholesterol-conjugated Polyoxyethylene sorbitol Oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl Mater Interfaces 10(50):43411–43428

    Article  CAS  PubMed  Google Scholar 

  29. Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X (2019) Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 48(11):2967–3014

    Article  CAS  PubMed  Google Scholar 

  30. Thom G, Hatcher J, Hearn A, Paterson J, Rodrigo N, Beljean A, Gurrell I, Webster C (2018) Isolation of blood-brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs 10(2):304–314

    Article  CAS  PubMed  Google Scholar 

  31. Hays EM, Duan W, Shigdar S (2017) Aptamers and glioblastoma: their potential use for imaging and therapeutic applications. Int J Mol Sci 18(12):2576

    Article  PubMed Central  CAS  Google Scholar 

  32. Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B (2018) Nanotechnology-based strategies for siRNA brain delivery for disease therapy. Trends Biotechnol 36(5):562–575

    Article  CAS  PubMed  Google Scholar 

  33. Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2017) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 126(1):191–200

    Article  PubMed  Google Scholar 

  34. Poon C, McMahon D, Hynynen K (2017) Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 120:20–37

    Article  CAS  PubMed  Google Scholar 

  35. Ye D, Zhang X, Yue Y, Raliya R, Biswas P, Taylor S, Tai Y-C, Rubin JB, Liu Y, Chen H (2018) Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J Control Release 286:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leamon CP, Reddy JA, Dorton R, Bloomfield A, Emsweller K, Parker N, Westrick E (2008) Impact of high and low folate diets on tissue folate receptor levels and antitumor responses toward folate-drug conjugates. J Pharmacol Exp Ther 327(3):918–925

    Article  CAS  PubMed  Google Scholar 

  37. Pope WB (2018) Brain metastases: neuroimaging. Handb Clin Neurol 149:89–112

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fink JR, Muzi M, Peck M, Krohn KA (2015) Multimodality Brain Tumor Imaging: MR Imaging, PET, and PET/MR Imaging. J Nucl Med 56(10):1554–1561

    Article  CAS  PubMed  Google Scholar 

  39. Pope WB, Djoukhadar I, Jackson A (2016) Chapter 3 - Neuroimaging. In: Berger MS, Weller M (eds) Handb Clin Neurol. Elsevier, Amsterdam, pp 27–50

    Google Scholar 

  40. Wang L, Tang W, Zhen Z, Chen H, Xie J, Zhao Q (2014) Improving detection specificity of iron oxide nanoparticles (IONPs) using the SWIFT sequence with long T(2) suppression. Magn Reson Imaging 32(6):671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31(24):6317–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seo JW, Ang J, Mahakian LM, Tam S, Fite B, Ingham ES, Beyer J, Forsayeth J, Bankiewicz KS, Xu T, Ferrara KW (2015) Self-assembled 20-nm (64)Cu-micelles enhance accumulation in rat glioblastoma. J Control Release 220(Pt A):51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5(1):4206

    Article  CAS  PubMed  Google Scholar 

  44. Fan Q, Cheng K, Yang Z, Zhang R, Yang M, Hu X, Ma X, Bu L, Lu X, Xiong X, Huang W, Zhao H, Cheng Z (2015) Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater 27(5):843–847

    Article  CAS  PubMed  Google Scholar 

  45. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang R, Harmsen S, Samii JM, Karabeber H, Pitter KL, Holland EC, Kircher MF (2016) High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe. Theranostics 6(8):1075–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu X, Yang H, Yang W, Chen X, Gao J, Gong X, Wang H, Duan Y, Wei D, Chang J (2019) Nanoparticle-based diagnostic and therapeutic systems for brain tumors. J Mater Chem B 7(31):4734–4750

    Article  CAS  PubMed  Google Scholar 

  48. Zhang C-L, Huang T, Wu B-L, He W-X, Liu D (2017) Stem cells in cancer therapy: opportunities and challenges. Oncotarget 8(43):75756–75766

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mariotti V, Greco SJ, Mohan RD, Nahas GR, Rameshwar P (2014) Stem cell in alternative treatments for brain tumors: potential for gene delivery. Mol Cell Ther 2:24–24

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shah K (2016) Stem cell-based therapies for tumors in the brain: are we there yet? Neuro-Oncology 18(8):1066–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li G, Bonamici N, Dey M, Lesniak MS, Balyasnikova IV (2018) Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin Drug Deliv 15(2):163–172

    Article  CAS  PubMed  Google Scholar 

  53. Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, Garcia E, Aramburo S, Valenzuela VV, Frank RT, Barish ME, Brown CE, Kim SU, Badie B, Portnow J (2013) Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med 5(184):184ra59

    Article  PubMed  CAS  Google Scholar 

  54. Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D’Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, Gutova M, Frankel P, Chen M, Aboody KS (2017) Neural stem cell–based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res 23(12):2951–2960

    Article  CAS  PubMed  Google Scholar 

  55. Jain KK (2018) A critical overview of targeted therapies for glioblastoma. Front Oncol 8:419–419

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dupont C, Vermandel M, Reyns N, Mordon S (2018) La thérapie photodynamique. Med Sci (Paris) 34(11):901–903

    Article  Google Scholar 

  57. Hong EJ, Choi DG, Shim MS (2016) Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B 6(4):297–307

    Article  PubMed  PubMed Central  Google Scholar 

  58. Akimoto J (2016) Photodynamic therapy for malignant brain tumors. Neurol Med Chir (Tokyo) 56(4):151–157

    Article  Google Scholar 

  59. Dupont C, Vermandel M, Leroy H-A, Quidet M, Lecomte F, Delhem N, Mordon S, Reyns N (2018) INtraoperative photoDYnamic therapy for GliOblastomas (INDYGO): study protocol for a phase I clinical trial. Neurosurgery 84(6):E414–E419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhuti Agrahari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bell, M., Rooks, C.P., Agrahari, V. (2021). Drug Delivery Approaches and Imaging Techniques for Brain Tumor. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics