Skip to main content

Establishing Orthotopic Xenograft Glioblastoma Models for Use in Preclinical Development

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Part of the book series: Neuromethods ((NM,volume 163))

  • 577 Accesses

Abstract

Glioblastoma multiforme is the most common, aggressive and lethal type of brain tumor, characterized by an aggressive, heterogenic and highly angiogenic behavior. Establishing mice models that mimic the etiology, biology and histopathology of human glioblastomas is of extreme importance, as they are a crucial tool to understand the tumor initiation, formation, angiogenesis, progression and metastasis. Orthotopic xenograft mice models remain in the frontline of neuro-oncology as an experimental system to identify novel therapeutic targets and to determine the efficacy of different therapeutic agents and/or nanosystems. The present chapter describes a protocol for establishing brain tumor xenografts in mice following a single injection of glioblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  2. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489. https://doi.org/10.1093/jnen/64.6.479

    Article  CAS  PubMed  Google Scholar 

  3. Zlatescu MC, TehraniYazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, Cairncross JG (2001) Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res 61(18):6713–6715

    CAS  PubMed  Google Scholar 

  4. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772. https://doi.org/10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

  5. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15(19):6002–6007. https://doi.org/10.1158/1078-0432.CCR-09-0715

    Article  CAS  PubMed  Google Scholar 

  7. Davis ME (2016) Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs 20(5):S2–S8. https://doi.org/10.1188/16.CJON.S1.2-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miyai M, Tomita H, Soeda A, Yano H, Iwama T, Hara A (2017) Current trends in mouse models of glioblastoma. J Neurooncol 135(3):423–432. https://doi.org/10.1007/s11060-017-2626-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Basso J, Miranda A, Sousa J, Pais A, Vitorino C (2018) Repurposing drugs for glioblastoma: from bench to bedside. Cancer Lett 428:173–183. https://doi.org/10.1016/j.canlet.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  10. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683

    Article  CAS  PubMed  Google Scholar 

  11. Zhou J, Atsina K-B, Himes BT, Strohbehn GW, Saltzman WM (2012) Novel delivery strategies for glioblastoma. Cancer J 18(1):89–99. https://doi.org/10.1097/PPO.0b013e318244d8ae

    Article  PubMed  Google Scholar 

  12. Zottel A, Videtič Paska A, Jovčevska I (2019) Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials 12(10):1588. https://doi.org/10.3390/ma12101588

    Article  CAS  PubMed Central  Google Scholar 

  13. Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A (2018) Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels 4(3):62. https://doi.org/10.3390/gels4030062

    Article  CAS  PubMed Central  Google Scholar 

  14. Sulaiman A, Wang L (2017) Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget 8(68):113269–113281. https://doi.org/10.18632/oncotarget.22916

    Article  PubMed  PubMed Central  Google Scholar 

  15. Namekawa T, Ikeda K, Horie-Inoue K, Inoue S (2019) Application of prostate cancer models for preclinical study: advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells. Cells 8(1):74. https://doi.org/10.3390/cells8010074

    Article  CAS  PubMed Central  Google Scholar 

  16. Williams J (2018) Using PDX for preclinical cancer drug discovery: the evolving field. J Clin Med 7(3):41. https://doi.org/10.3390/jcm7030041

    Article  CAS  PubMed Central  Google Scholar 

  17. Li G (2015) Patient-derived xenograft models for oncology drug discovery. J Cancer Metast Treat 1(1):8–15. https://doi.org/10.4103/2394-4722.152769

    Article  CAS  Google Scholar 

  18. Khan FR, Henderson JM (2013) Deep brain stimulation surgical techniques. In: Handbook of clinical neurology, vol 116. Elsevier, Amsterdam, pp 27–37. https://doi.org/10.1016/B978-0-444-53497-2.00003-6

    Chapter  Google Scholar 

  19. Wu M, Shu J (2018) Multimodal molecular imaging: current status and future directions. Contrast Media Mol Imaging 2018

    Google Scholar 

  20. Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62(11):1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia J, Wang LV (2013) Small-animal whole-body photoacoustic tomography: a review. IEEE Trans Biomed Eng 61(5):1380–1389

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648(supplement 1):S236–s240. https://doi.org/10.1016/j.nima.2010.11.092

    Article  CAS  PubMed  Google Scholar 

  23. Jost SC, Collins L, Travers S, Piwnica-Worms D, Garbow JR (2009) Measuring brain tumor growth: combined bioluminescence imaging-magnetic resonance imaging strategy. Mol Imaging 8(5):245–253

    Article  PubMed  Google Scholar 

  24. Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W (2017) Glioma: experimental models and reality. Acta Neuropathol 133(2):263–282

    Article  PubMed  PubMed Central  Google Scholar 

  25. Commission E (2010) Directive 2010/63/EU of the European Parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Union 276:33–79

    Google Scholar 

  26. Costa A, Antunes L (2011) Handbook of laboratory animals: mice, rats and rabbits, vol 419. Série didáctica Ciências Aplicadas. Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal

    Google Scholar 

  27. Paxinos G, Franklin KB (2001) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, Cambridge, Massachusetts

    Google Scholar 

  28. Frenster JD, Placantonakis DG (2018) Bioluminescent in vivo imaging of Orthotopic glioblastoma xenografts in mice. In: Placantonakis DG (ed) Glioblastoma: methods and protocols. Springer New York, New York, NY, pp 191–198. https://doi.org/10.1007/978-1-4939-7659-1_15

    Chapter  Google Scholar 

Download references

Acknowledgments

João Basso acknowledges the PhD research grant SFRH/BD/149138/2019 assigned by Fundação para a Ciência e a Tecnologia (FCT), the Portuguese Agency for Scientific Research. The authors also acknowledge FCT for the financial support through the Research Projects no. 016648 (Ref. POCI-01-0145-FEDER- 016648), Pest UID/NEU/04539/2013, COMPETE (Ref. POCI-01-0145-FEDER-007440), and CENTRO-01-0145-FEDER-030752 and the Coimbra Chemistry Centre, supported by FCT, through the Project UID/QUI/00313/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Vitorino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Basso, J., Sereno, J., Fortuna, A., Castelo-Branco, M., Vitorino, C. (2021). Establishing Orthotopic Xenograft Glioblastoma Models for Use in Preclinical Development. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics