Skip to main content

Resistance Marker- and Gene Gun-Mediated Transformation of Trichoderma reesei

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

Transformation enables the transfer of DNA into fungal cells for subsequent integration into the genome. Due to its versatility in industrial application, transformation is of utmost importance in Trichoderma reesei and hence continuously optimized. As one of the most crucial obstacles in fungal transformation efforts, removal of the cell wall is required to efficiently target genome modification cassettes to the genome. Here we describe resistance marker-mediated gene gun (biolistic) transformation of fungal spores of T. reesei as an alternative to protoplast transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez-Iglesias A, Schmoll M (2015) Protoplast transformation for genome manipulation in fungi. In: Van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 1. Springer, Cham, pp 21–40

    Google Scholar 

  2. van den Berg MA, Maruthachalam K (eds) (2015) Genetic transformation systems in fungi, vol I. Springer, Heidelberg, (ISBN 978-3-319-10142-2)

    Google Scholar 

  3. Penttilä M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164

    Article  PubMed  Google Scholar 

  4. Gruber F, Visser J, Kubicek CP, de Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18(1):71–76

    Article  CAS  PubMed  Google Scholar 

  5. Mach RL, Schindler M, Kubicek CP (1994) Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet 25(6):567–570

    Article  CAS  PubMed  Google Scholar 

  6. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutierrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Article  CAS  PubMed  Google Scholar 

  7. Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN (2012) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 53(6):1232–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atanasova L, Gruber S, Lichius A, Radebner T, Abendstein L, Munsterkotter M, Stralis-Pavese N, Labaj PP, Kreil DP, Zeilinger S (2018) The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Sci Rep 8(1):12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guangtao Z, Seiboth B, Wen C, Yaohua Z, Xian L, Wang T (2010) A novel carbon source-dependent genetic transformation system for the versatile cell factory Hypocrea jecorina (anamorph Trichoderma reesei). FEMS Microbiol Lett 303(1):26–32

    Article  CAS  PubMed  Google Scholar 

  10. Malmierca MG, Cardoza RE, Gutierrez S (2015) Trichoderma transformation methods. In: Van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, Fungal biology, vol I. Springer, Cham, pp 41–48

    Google Scholar 

  11. Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21(1):25–29

    Article  Google Scholar 

  12. Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139(2):146–151

    Article  CAS  PubMed  Google Scholar 

  13. Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttila M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77(1):114–121

    Article  CAS  PubMed  Google Scholar 

  14. Stappler E, Dattenböck C, Tisch D, Schmoll M (2017) Analysis of light- and carbon-specific transcriptomes implicates a class of G-protein-coupled receptors in cellulose sensing. mSphere 2(3):e00089-00017

    Article  Google Scholar 

  15. Derntl C, Kiesenhofer DP, Mach RL, Mach-Aigner AR (2015) Novel strategies for genomic manipulation of Trichoderma reesei with the purpose of strain engineering. Appl Environ Microbiol 81(18):6314–6323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gravelat FN, Askew DS, Sheppard DC (2012) Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach. Methods Mol Biol 845:119–130

    Article  CAS  PubMed  Google Scholar 

  17. Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36(2):134–146

    Article  CAS  PubMed  Google Scholar 

  18. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rantasalo A, Vitikainen M, Paasikallio T, Jantti J, Landowski CP, Mojzita D (2019) Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep 9(1):5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Souza CP, Hashmi SB, Osmani AH, Andrews P, Ringelberg CS, Dunlap JC, Osmani SA (2013) Functional analysis of the Aspergillus nidulans kinome. PLoS One 8(3):e58008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Son S, Osmani SA (2009) Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot Cell 8(4):573–585. https://doi.org/10.1128/EC.00346-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klein RM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  25. Li D, Tang Y, Lin J, Cai W (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Factories 16(1):168

    Article  CAS  Google Scholar 

  26. Hazell BW, Te’o VS, Bradner JR, Bergquist PL, Nevalainen KM (2000) Rapid transformation of high cellulase-producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol 30(4):282–286

    Article  CAS  PubMed  Google Scholar 

  27. Lorito M, Hayes CK, Di Pietro A, Harman GE (1993) Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet 24(4):349–356

    Article  CAS  PubMed  Google Scholar 

  28. Te’o VS, Bergquist PL, Nevalainen KM (2002) Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels hepta adaptor system. J Microbiol Methods 51(3):393–399

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Schmoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmoll, M., Zeilinger, S. (2021). Resistance Marker- and Gene Gun-Mediated Transformation of Trichoderma reesei. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics