Skip to main content

Amperometry in Single Cells and Tissue

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2233))

Abstract

The release from cells of signaling molecules through the controlled process of exocytosis involves multiple coordinated steps and is essential for the proper control of a multitude of biological pathways across the endocrine and nervous systems. However, these events are minute both temporally and in terms of the minute amounts of neurotransmitters, hormones, growth factors, and peptides released from single vesicles during exocytosis. It is therefore difficult to measure the kinetics of single exocytosis events in real time. One noninvasive method of measuring the release of molecules from cells is carbon-fiber amperometry. In this chapter, we will describe how we undertake such measurements from both single cells and in live tissue, how the subsequent data are analyzed, and how we interpret these results in terms of their relevant physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue--a new neurophysiological measurement. Brain Res 55:209–213

    Article  CAS  Google Scholar 

  2. Marcenac F, Gonon F (1985) Fast in vivo monitoring of dopamine release in the rat brain with differential pulse amperometry. Anal Chem 57:1778–1779

    Article  CAS  Google Scholar 

  3. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658

    Article  CAS  Google Scholar 

  4. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ Jr, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758

    Article  CAS  Google Scholar 

  5. Keating DJ, Spencer NJ (2010) Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138:659–670

    Article  CAS  Google Scholar 

  6. Spencer N, Robinson K, Flack B, Zagorodnyuk P, Keating DJ (2011) Mechanisms underlying distension-evoked peristalsis in Guinea pig distal colon: is there a role for enterochromaffin cells? Am J Physiol Gastrointest Liver Physiol 301:G519–G527

    Article  CAS  Google Scholar 

  7. Yu Y, Chu P-Y, Bowser DN, Keating DJ, Dubach D, Harper I, Tkalcevic J, Finkelstein DI, Pritchard MA (2008) Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Hum Mol Genet 17:3281–3290

    Article  CAS  Google Scholar 

  8. Zanin MP, Phillips L, Mackenzie KD, Keating DJ (2011) Aging differentially affects multiple aspects of vesicle fusion kinetics. PLoS One 6:e27820

    Article  CAS  Google Scholar 

  9. Zanin MP, Mackenzie KD, Peiris H, Pritchard MA, Keating DJ (2013) RCAN1 regulates vesicle recycling and quantal release kinetics via effects on calcineurin activity. J Neurochem 124:290–299

    Article  CAS  Google Scholar 

  10. Keating DJ, Dubach D, Zanin MP, Yu Y, Martin K, Zhao Y-F, Chen C, Porta S, Arbonés ML, Mittaz L, Pritchard MA (2008) DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for down syndrome and Alzheimer's disease. Hum Mol Genet 17:1020–1030

    Article  CAS  Google Scholar 

  11. Wen PJ, Osborne SL, Zanin M, Low PC, Wang H-TA, Schoenwaelder SM, Jackson SP, Wedlich-Söldner R, Vanhaesebroeck B, Keating DJ, Meunier FA (2011) Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nat Commun 2:491

    Article  Google Scholar 

  12. Keating DJ, Winter MA, Hemsley KM, Mackenzie KD, Teo EH, Hopwood JJ, Brooks DA, Parkinson-Lawrence EJ (2012) Exocytosis is impaired in mucopolysaccharidosis IIIA mouse chromaffin cells. Neuroscience 227:110–118

    Article  CAS  Google Scholar 

  13. Raghupathi R, Duffield MD, Zelkas L, Meedeniya A, Brookes SJH, Sia TC, Wattchow DA, Spencer NJ, Keating DJ (2013) Identification of unique release kinetics of serotonin from Guinea-pig and human enterochromaffin cells. J Physiol 591:5959–5975

    Article  CAS  Google Scholar 

  14. Zelkas L, Raghupathi R, Lumsden AL, Martin AM, Sun E, Spencer NJ, Young RL, Keating DJ (2015) Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability. Nutr Metab (Lond) 12:55

    Article  Google Scholar 

  15. Raghupathi R, Jessup CF, Lumsden AL, Keating DJ (2016) Fusion pore size limits 5-HT release from single enterochromaffin cell vesicles. J Cell Physiol 231(7):1593–1600

    Article  CAS  Google Scholar 

  16. Bertrand PP (2004) Real-time detection of serotonin release from enterochromaffin cells of the Guinea-pig ileum. Neurogastroenterol Motil 16:511–514

    Article  CAS  Google Scholar 

  17. Maritzen T, Keating DJ, Neagoe I, Zdebik AA, Jentsch TJ (2008) Role of the vesicular chloride transporter ClC-3 in neuroendocrine tissue. J Neurosci 28:10587–10598

    Article  CAS  Google Scholar 

  18. Kumar R, Corbett MA, Smith NJC, Jolly LA, Tan C, Keating DJ, Duffield MD, Utsumi T, Moriya K, Smith KR, Hoischen A, Abbott K, Harbord MG, Compton AG, Woenig JA, Arts P, Kwint M, Wieskamp N, Gijsen S, Veltman JA, Bahlo M, Gleeson JG, Haan E, Gecz J (2015) Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder. Hum Mol Genet 24(7):2000–2010

    Article  CAS  Google Scholar 

  19. Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ (2015) Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 20:810–819

    Article  CAS  Google Scholar 

  20. Colliver TL, Hess EJ, Ewing AG (2001) Amperometric analysis of exocytosis at chromaffin cells from genetically distinct mice. J Neurosci Methods 105:95–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien J. Keating .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keating, D.J. (2021). Amperometry in Single Cells and Tissue. In: Niedergang, F., Vitale, N., Gasman, S. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 2233. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1044-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1044-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1043-5

  • Online ISBN: 978-1-0716-1044-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics