Skip to main content

Qualitative Modeling, Analysis and Control of Synthetic Regulatory Circuits

  • Protocol
  • First Online:
Synthetic Gene Circuits

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2229))

Abstract

Qualitative modeling approaches are promising and still underexploited tools for the analysis and design of synthetic circuits. They can make predictions of circuit behavior in the absence of precise, quantitative information. Moreover, they provide direct insight into the relation between the feedback structure and the dynamical properties of a network. We review qualitative modeling approaches by focusing on two specific formalisms, Boolean networks and piecewise-linear differential equations, and illustrate their application by means of three well-known synthetic circuits. We describe various methods for the analysis of state transition graphs, discrete representations of the network dynamics that are generated in both modeling frameworks. We also briefly present the problem of controlling synthetic circuits, an emerging topic that could profit from the capacity of qualitative modeling approaches to rapidly scan a space of design alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kosuri S, Church G (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11(5):499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Csörgő B, Nyerges A, Pósfai G, Féher T (2016) System-level genome editing in microbes. Curr Opin Microbiol 33:113–122

    Google Scholar 

  3. Decoene T, Paepe BD, Maertens J, Coussement P, Peters G, Maeseneire SD, Mey MD (2018) Standardization in synthetic biology: an engineering discipline coming of age. Crit Rev Biotechnol 38(5):647–656

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen A, Der B, Shin J, Vaidyanathan P, Paralanov V, Strychalski E, Ross D, Densmore D, Voigt C (2016) Genetic circuit design automation. Science 352(6281):aac7341

    Google Scholar 

  5. Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288–290

    Article  CAS  PubMed  Google Scholar 

  6. Otero-Muras I, Banga J (2017) Automated design framework for synthetic biology exploiting Pareto optimality. ACS Synth Biol 6(7):1180–1193

    Article  CAS  PubMed  Google Scholar 

  7. Purcell O, Savery N, Grierson C, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7(52):1503–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashyraliyev M, Nanfack YF, Kaandorp J, Blom J (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276(4):886–902

    Article  CAS  PubMed  Google Scholar 

  9. Berthoumieux S, Brilli M, de Jong H, Kahn D, Cinquemani E (2011) Identification of metabolic network models from incomplete high-throughput datasets. Bioinformatics 27(13):i186–i195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villaverde A, Banga J (2013) Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface 11(91):20130505

    Article  PubMed  Google Scholar 

  11. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  CAS  PubMed  Google Scholar 

  12. Glass L, Kauffman S (1973) The logical analysis of continuous, nonlinear biochemical control networks. J Theor Biol 39:103–129

    Article  CAS  PubMed  Google Scholar 

  13. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585

    Article  CAS  PubMed  Google Scholar 

  14. Rodríguez-Jorge O, Kempis-Calanis L, Abou-Jaoudé W, Gutiérrez-Reyna D, Hernandez C, Ramirez-Pliego O, Thomas-Chollier M, Spicuglia S, Santana M, Thieffry D (2019) Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4+ T cell activation. Sci Signal 12(577):eaar3641

    Google Scholar 

  15. Saez-Rodriguez J, Simeoni L, Lindquist J, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles E, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hsiao V, Swaminathan A, Murray R (2018) Control theory for synthetic biology. IEEE Control Syst Mag 38:32–62

    Article  Google Scholar 

  17. Del Vecchio D, Dy AJ, Qian Y (2016) Control theory meets synthetic biology. J R Soc Interface 13:20160380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gardner T, Cantor C, Collins J (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  CAS  PubMed  Google Scholar 

  19. Lugagne JB, Carrillo S, Kirch M, Köhler A, Batt G, Hersen P (2017) Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat Commun 8:1671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov K, Manu, Myasnikova E, Vanario-Alonso C, Samsonova M, Sharp D, Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430(6997):368–371

    Article  CAS  PubMed  Google Scholar 

  21. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405(6786):590–591

    Article  CAS  PubMed  Google Scholar 

  22. Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  PubMed  Google Scholar 

  23. Thomas R, D’Ari R (1990) Biological feedback. CRC Press, Boca Raton

    Google Scholar 

  24. Atkinson M, Savageau M, Myers J, Ninfa A (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113(5):597–608

    Article  CAS  PubMed  Google Scholar 

  25. Cantone I, Marucci L, Iorio F, Ricci M, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma M (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137:172–181

    Article  CAS  PubMed  Google Scholar 

  26. Shmulevich I, Dougherty E, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    Article  CAS  PubMed  Google Scholar 

  27. Mori T, Flöttmann M, Krantz M, Akutsu T, Klipp E (2015) Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks. BMC Syst Biol 9(45):1–9

    CAS  Google Scholar 

  28. Chaves M, Albert R, Sontag E (2005) Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 235(3):431–449

    Article  PubMed  Google Scholar 

  29. Gonzalez A, Naldi A, Sànchez L, DThieffry, Chaouiya C (2006) GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. BioSystems 84(2):91–100

    Google Scholar 

  30. Aracena J, Goles E, Moreira A, Salinas L (2009) On the robustness of update schedules in Boolean networks. BioSystems 97(1):1–8

    Article  CAS  PubMed  Google Scholar 

  31. Naldi A, Rémy E, Thieffry D, Chaouiya C (2011) Dynamically consistent reduction of logical regulatory graphs. Theor Comput Sci 412(21):2207–2218

    Article  Google Scholar 

  32. Zañudo J, Albert R (2013) An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23(2):025111

    Article  PubMed  Google Scholar 

  33. Irons D (2006) Improving the efficiency of attractor cycle identification in Boolean networks. Physica D 217:7–21

    Article  Google Scholar 

  34. Akutsu T, Melkman A, Tamura T, Yamamoto M (2011) Determining a singleton attractor of a Boolean network with nested canalyzing functions. J Comput Biol 18(10):1275–1290

    Article  CAS  PubMed  Google Scholar 

  35. Veliz-Cuba A, Aguilar B, Hinkelmann F, Laubenbacher R (2014) Steady state analysis of Boolean molecular network models via model reduction and computational algebra. BMC Bioinform 15:221

    Article  Google Scholar 

  36. Lorenz T, Siebert H, Bockmayr A (2013) Analysis and characterization of asynchronous state transition graphs using extremal states. Bull Math Biol 75(6):920–938

    Article  PubMed  Google Scholar 

  37. Tournier L, Chaves M (2013) Interconnection of asynchronous Boolean networks, asymptotic and transient dynamics. Automatica 49(4):884–893

    Article  Google Scholar 

  38. Datta A, Choudhary A, Bittner ML, Dougherty ER (2003) External control in Markovian genetic regulatory networks. Mach Learn 52(1–2):169–181

    Article  Google Scholar 

  39. Laschov D, Margaliot M (2012) Controllability of Boolean control networks via the Perron-Frobenius theory. Automatica 48(6):1218–1223

    Article  Google Scholar 

  40. Yang JM, Lee CK, Cho KH (2018) Global stabilization of Boolean networks to control the heterogeneity of cellular responses. Front Physiol 9:774

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101(14):4781–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):124–131

    Article  Google Scholar 

  43. Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez M, Alvarez-Buylla E (2015) A dynamic gene regulatory network model that recovers the cyclic behavior of Arabidopsis thaliana cell cycle. PLoS Comput Biol 11(9):e1004486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6(3):e1000702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang R, Shah M, Yang J, Nyland S, Liu X, Yun J, Albert R, Loughran TP Jr (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105(42):16308–16313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sánchez L, Thieffry D (2001) A logical analysis of the Drosophila gap-gene system. J Theor Biol 211:115–141

    Article  PubMed  CAS  Google Scholar 

  47. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes. J Theor Biol 223:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barberis M, Helikar T (eds) (2019) Logical modeling of cellular processes: from software development to network dynamics. Lausanne: Frontiers Media

    Google Scholar 

  49. Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8(4):210–219

    Article  CAS  PubMed  Google Scholar 

  50. Heiner M, Koch I (2004) Petri net based model validation in systems biology. In: Cortadella J, Reisig W (eds) Applications and theory of Petri nets 2004. Springer, Berlin, pp 216–237

    Chapter  Google Scholar 

  51. Acary V, de Jong H, Brogliato B (2014) Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. Physica D 269:103–119

    Article  Google Scholar 

  52. van Ham P (1979) How to deal with variables with more than two levels. In: Thomas R (ed) Kinetic logic: a Boolean approach to the analysis of complex regulatory systems. Lecture notes in biomathematics, vol 29. Springer, Berlin, pp 326–343

    Google Scholar 

  53. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mestl T, Plahte E, Omholt S (1995) A mathematical framework for describing and analysing gene regulatory networks. J Theor Biol 176(2):291–300

    Article  CAS  PubMed  Google Scholar 

  55. de Jong H, Gouzé JL, Hernandez C, Page M, Sari T, Geiselmann J (2004) Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull Math Biol 66(2):301–340

    Article  PubMed  Google Scholar 

  56. Gouzé JL, Sari T (2002) A class of piecewise linear differential equations arising in biological models. Dynam Syst 17(4):299–316

    Article  Google Scholar 

  57. Casey R, de Jong H, Gouzé JL (2006) Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol 52(1):27–56

    Article  PubMed  Google Scholar 

  58. Ironi L, Panzeri L, Plahte E, Simoncini V (2011) Dynamics of actively regulated gene networks. Physica D 240(8):779–794

    Article  CAS  Google Scholar 

  59. Plahte E, Kjóglum S (2005) Analysis and generic properties of gene regulatory networks with graded response functions. Physica D 201(1):150–176

    Article  CAS  Google Scholar 

  60. Machina A, Edwards R, van den Driessche P (2013) Singular dynamics in gene network models. SIAM J Appl Math 12(1):95–125

    Google Scholar 

  61. Glass L (1975) Classification of biological networks by their qualitative dynamics. J Theor Biol 54(1):85–107

    Article  CAS  PubMed  Google Scholar 

  62. Glass L, Pasternack J (1978) Prediction of limit cycles in mathematical models of biological oscillations. Bull Math Biol 40(3):27–44

    Article  Google Scholar 

  63. Edwards R (2000) Analysis of continuous-time switching networks. Physica D 146(1–4):165–199

    Article  Google Scholar 

  64. Farcot E (2006) Geometric properties of a class of piecewise affine biological network models. J Math Biol 52(3):373–418

    Article  PubMed  Google Scholar 

  65. Batt G, de Jong H, Page M, Geiselmann J (2008) Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44(4):982–989

    Article  Google Scholar 

  66. Thomas R, Thieffry D, Kaufman M (1995) Dynamical behaviour of biological regulatory networks: I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull Math Biol 57(2):247–276

    Article  CAS  PubMed  Google Scholar 

  67. Edwards R, Siegelmann H, Aziza K, Glass L (2001) Symbolic dynamics and computation in model gene networks. Chaos 11(1):160–169

    Article  CAS  PubMed  Google Scholar 

  68. Mestl T, Lemay C, Glass L (1996) Chaos in high-dimensional neural and gene networks. Physica D 98(1):33–52

    Article  Google Scholar 

  69. de Jong H, Geiselmann J, Batt G, Hernandez C, Page M (2004) Qualitative simulation of the initiation of sporulation in B. subtilis. Bull Math Biol 66(2):261–299

    Article  PubMed  CAS  Google Scholar 

  70. Monteiro P, Dias P, Ropers D, Oliveira A, Sá-Correia I, Teixeira M, Freitas A (2011) Qualitative modelling and formal verification of the FLR1 gene mancozeb response in Saccharomyces cerevisiae. IET Syst Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  71. Sepulchre JA, Reverchon S, Nasser W (2007) Modeling the onset of virulence in a pectinolytic bacterium. J Theor Biol 44(2):239–257

    Article  CAS  Google Scholar 

  72. de Jong H, Geiselmann J, Hernandez C, Page M (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3):336–344

    Article  PubMed  CAS  Google Scholar 

  73. Batt G, Besson B, Ciron P, de Jong H, Dumas E, Geiselmann J, Monte R, Monteiro P, Page M, Rechenmann F, Ropers D (2012) Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks. Methods Mol Biol 804:439–462

    Article  CAS  PubMed  Google Scholar 

  74. Huttinga Z, Cummins B, Gedeon T, Mischaikow K (2018) Global dynamics for switching systems and their extensions by linear differential equations. Physica D 367:19–37

    Article  PubMed  Google Scholar 

  75. Ghosh R, Tomlin C (2004) Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. Syst Biol 1(1):170–183

    Article  CAS  Google Scholar 

  76. Batt G, Page M, Cantone I, Goessler G, Monteiro P, de Jong H (2010) Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics 26(18):i603–i610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65:1025–1051

    Article  PubMed  Google Scholar 

  78. de Jong H, Page M (2008) Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans Comput Biol Bioinform 5(2):208–222

    Article  PubMed  Google Scholar 

  79. Dubrova E, Teslenko M (2011) A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 8(5):1393–1399

    Article  PubMed  Google Scholar 

  80. Abdallah EB, Folschette M, Roux O, Magnin M (2017) ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks. Algorithms Mol Biol 12:20

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klarner H, Siebert H (2015) Approximating attractors of Boolean networks by iterative CTL model checking. Front Bioeng Biotechnol 3:130

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chaouiya C, Naldi A, Thieffry D (2012) Logical modelling of gene regulatory networks with GINsim. Methods Mol Biol 804:463–479

    Article  CAS  PubMed  Google Scholar 

  83. Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms. MIT Press and McGraw-Hill, Cambridge

    Google Scholar 

  84. Paulevé L (2018) Reduction of qualitative models of biological networks for transient dynamics analysis. IEEE/ACM Trans Comput Biol Bioinformatics 15(4):1167–1179

    Article  Google Scholar 

  85. Cummins B, Gedeon T, Harker S, Mischaikow K (2018) DSGRN: examining the dynamics of families of logical models. Front Physiol 9:549

    Article  PubMed  PubMed Central  Google Scholar 

  86. Veliz-Cuba A (2011) Reduction of Boolean network models. J Theor Biol 289:167–172

    Article  PubMed  Google Scholar 

  87. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press, Boston

    Google Scholar 

  88. Carrillo M, Góngora P, Rosenblueth D (2012) An overview of existing modeling tools making use of model checking in the analysis of biochemical networks. Front Plant Sci 3:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bartocci E, Lió P (2016) Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol 12(1):e1004591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bernot G, Comet JP, Richard A, Guespin J (2004) Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J Theor Biol 229(3):339–347

    Article  PubMed  Google Scholar 

  91. Calzone L, Fages F, Soliman S (2006) BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807

    Article  CAS  PubMed  Google Scholar 

  92. Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan G, Qadeer S (eds) Proceedings of 23rd international conference computer aided verification (CAV’11). Lecture notes in computer science, vol 6806. Springer, Berlin, pp 585–591

    Chapter  Google Scholar 

  93. Monteiro P, Dumas E, Besson B, Mateescu R, Page M, Freitas A, de Jong H (2009) A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks. BMC Bioinform 10:450

    Article  CAS  Google Scholar 

  94. Batt G, Belta C, Weiss R (2008) Temporal logic analysis of gene networks under parameter uncertainty. IEEE Trans Autom Control 53:215–229

    Article  Google Scholar 

  95. Courbet A, Amar P, Fages F, Renard E, Molina F (2018) Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Mol Syst Biol 14(6):e7845

    Article  PubMed  PubMed Central  Google Scholar 

  96. Perez-Carrasco R, Barnes C, Schaerli Y, Isalan M, Briscoe J, Page K (2018) Combining a toggle switch and a repressilator within the AC-DC circuit generates distinct dynamical behaviors. Cell Syst 6(4):521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chaves M, Tournier L (2018) Analysis tools for interconnected Boolean networks with biological applications. Front Physiol 9:586

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chaves M, Carta A (2015) Attractor computation using interconnected Boolean networks: testing growth rate models in E. coli. Theor Comput Sci 599:47–63

    Google Scholar 

  99. Bourdon J, Eveillard D, Siegel A (2011) Integrating quantitative knowledge into a qualitative gene regulatory network. PLOS Comput Biol 7(9):1–11

    Article  CAS  Google Scholar 

  100. Chaves M, Farcot E, Gouzé JL (2013) Probabilistic approach for predicting periodic orbits in piecewise affine differential models. Bull Math Biol 75(6):967–987

    Article  PubMed  Google Scholar 

  101. Stoll G, Viara E, Barillot E, Calzone L (2012) Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst Biol 6(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  102. Murrugarra D, Veliz-Cuba A, Aguilar B, Laubenbacher R (2016) Identification of control targets in Boolean molecular network models via computational algebra. BMC Syst Biol 10:94

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pal R, Datta A, Dougherty ER (2006) Optimal infinite-horizon control for probabilistic Boolean networks. IEEE Trans Signal Process 54(6):2375–2387

    Article  Google Scholar 

  104. Miller M, Hafner M, Sontag E, Davidsohn N, Subramanian S, Purnick P, Lauffenburger D, Weiss R (2016) Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity. PLoS Comput Biol 8:e1002579

    Article  CAS  Google Scholar 

  105. Aoki S, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, Khammash M (2019) A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570(7762):533–537

    Article  CAS  PubMed  Google Scholar 

  106. Chambon L, Gouzé JL (2019) A new qualitative control strategy for the genetic toggle switch. IFAC-PapersOnLine 52(1):532–537

    Google Scholar 

  107. Edwards R, Kim S, van den Driessche P (2011) Control design for sustained oscillation in a two-gene regulatory network. J Math Biol 62(4):453–478

    Article  PubMed  Google Scholar 

  108. Liu D, Mannan A, Han Y, Oyarzún D, Zhang F (2018) Dynamic metabolic control: towards precision engineering of metabolism. J Ind Microbiol Biotechnol 45(7):535–543

    Article  CAS  PubMed  Google Scholar 

  109. Wittmann D, Krumsiek J, Saez-Rodriguez J, Lauffenburger D, Klamt S, Theis F (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chaouiya C, Bérenguier D, Keating S, Naldi A, Van Iersel M, Rodriguez N, Dräger A, Büchel F, Cokelaer T, Kowal B, Wicks B, Gonçalves E, Dorier J, Page M, Monteiro P, Von Kamp A, Xenarios I, de Jong H, Hucka M, Klamt S, Thieffry D, Le Novère N, Saez-Rodriguez J, Helikar T (2013) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst Biol 7(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  111. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103

    Article  PubMed  Google Scholar 

  112. Fisher J, Henzinger T (2007) Executable cell biology. Nat Biotechnol 25(11):1239–1250

    Article  CAS  PubMed  Google Scholar 

  113. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780

    Article  CAS  PubMed  Google Scholar 

  114. Novère NL (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. de Jong H, Ropers D (2006) Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Brief Bioinform 7(4):354–63

    Google Scholar 

  116. Bornholdt S (2008) Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 5(Suppl 1):S85–S94

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9(5):055001

    Article  PubMed  CAS  Google Scholar 

  118. Abou-Jaoudé W, Traynard P, Monteiro P, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and dynamical analysis of cellular networks. Front Genet 7:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Glass L, Edwards R (2018) Hybrid models of genetic networks: mathematical challenges and biological relevance. J Theor Biol 458:111–118

    Article  PubMed  Google Scholar 

  120. Li X, Omotere O, Qian L, Dougherty E (2017) Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP J Bioinform Syst Biol 2017(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Gouzé JL (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6(1):11–15

    Article  Google Scholar 

  122. Soulé C (2003) Graphic requirements for multistationarity. ComPlexUs 1(3):123–133

    Article  Google Scholar 

  123. Snoussi E (1998) Necessary conditions for multistationarity and stable periodicity. J Biol Syst 6(1):3–9

    Article  Google Scholar 

  124. Remy E, Ruet P, Thieffry D (2008) Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41(3):335–350

    Article  Google Scholar 

  125. Richard A, Comet JP (2007) Necessary conditions for multistationarity in discrete dynamical systems. Discr Appl Math 155(18):2403–2413

    Article  Google Scholar 

  126. Deng X, Geng H, Matache M (2006) Dynamics of asynchronous random Boolean networks with asynchrony generated by stochastic processes. BioSystems 88(1–2):16–34

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank our friend and colleague Jean-Luc Gouzé, for a critical reading of the manuscript and many useful discussions. This work has been supported by the ANR projects Maximic (ANR-17-CE40-0024-01) and ICycle (ANR-16-CE33-0016-01), and Inria IPL CoSy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidde de Jong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chaves, M., de Jong, H. (2021). Qualitative Modeling, Analysis and Control of Synthetic Regulatory Circuits. In: Menolascina, F. (eds) Synthetic Gene Circuits . Methods in Molecular Biology, vol 2229. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1032-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1032-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1031-2

  • Online ISBN: 978-1-0716-1032-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics