Skip to main content

Mitochondrial Function and Metabolism of Cultured Skeletal Cells

  • Protocol
  • First Online:
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2230))

Abstract

Measuring cellular metabolism accurately is necessary to understand bioenergetic pathways in cells. The major ATP generating pathways in cells are oxidative phosphorylation and glycolysis. We have recently analyzed and published bioenergetic pathways active in osteoblasts undergoing differentiation in response to various substrates. Based on those studies, here we provide step-by-step procedures to isolate, culture, plate and run a seahorse assay for measuring cellular metabolism. Furthermore, we provide an example of oxygen consumption and extracellular acidification rate traces obtained from MC3T3E1-C4 cells using the XFe96 seahorse analyzer. One of the limitations of studying bioenergetics in bone cells is the current lack of techniques to analyze bioenergetics in vivo in live animals. There are currently techniques that have been developed using third harmonic generation to study osteocytes using three-photon microscopy along with metabolic changes using endogenous two-photon excited fluorescence. However, these sophisticated techniques are not widely available. The relative ease with which one can obtain data pertaining to metabolic parameters using the XF technology makes it a very attractive technique to utilize on a monolayer of adherent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karsenty G, Oury F (2012) Biology without walls: the novel endocrinology of bone. Annu Rev Physiol 74(1):87–105. https://doi.org/10.1146/annurev-physiol-020911-153233

    Article  CAS  PubMed  Google Scholar 

  2. Lee WC, Guntur AR, Long F, Rosen CJ (2017) Energy metabolism of the osteoblast: implications for osteoporosis. Endocr Rev 38(3):255–266. https://doi.org/10.1210/er.2017-00064

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Zhang Q (2019) Using seahorse machine to measure OCR and ECAR in cancer cells. Methods Mol Biol (Clifton, NJ) 1928:353–363. Epub 2019/02/07. https://doi.org/10.1007/978-1-4939-9027-6_18

    Article  CAS  Google Scholar 

  4. Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354. Epub 2014/11/25. https://doi.org/10.1016/b978-0-12-801415-8.00016-3

    Article  CAS  PubMed  Google Scholar 

  5. Mookerjee SA, Goncalves RLS, Gerencser AA, Nicholls DG, Brand MD (2015) The contributions of respiration and glycolysis to extracellular acid production. Biochim Biophys Acta 1847(2):171–181. Epub 2014/12/03. https://doi.org/10.1016/j.bbabio.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  6. Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, Maridas DE, Clemmons DE, Brand MD, Rosen CJ (2018) Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res 33(6):1052–1065. https://doi.org/10.1002/jbmr.3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang C, Silverman RM, Shen J, O'Keefe RJ (2018) Distinct metabolic programs induced by TGF-beta1 and BMP2 in human articular chondrocytes with osteoarthritis. J Orthop Translat 12:66–73. https://doi.org/10.1016/j.jot.2017.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guntur AR, Le PT, Farber CR, Rosen CJ (2014) Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155(5):1589–1595. https://doi.org/10.1210/en.2013-1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shum LC, White NS, Mills BN, Bentley KL, Eliseev RA (2016) Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev 25(2):114–122. https://doi.org/10.1089/scd.2015.0193

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Solesio ME, Schaffler MB, Frikha-Benayed D, Rosen CJ, Werner H, Kopchick JJ, Pavlov EV, Abramov AY, Yakar S (2019) Mitochondrial function is compromised in cortical bone osteocytes of Long-lived growth hormone receptor null mice. J Bone Miner Res Off J Am Soc Bone Miner Res 34(1):106–122. Epub 2018/09/15. https://doi.org/10.1002/jbmr.3573

    Article  CAS  Google Scholar 

  11. Sun N, Uda Y, Azab E, Kochen A, Santos R, Shi C, Kobayashi T, Wein MN, Divieti PP (2019) Effects of histone deacetylase inhibitor Scriptaid and parathyroid hormone on osteocyte functions and metabolism. J Biol Chem 294(25):9722–9733. https://doi.org/10.1074/jbc.RA118.007312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arnett TR, Orriss IR (2018) Metabolic properties of the osteoclast. Bone 115:25–30. Epub 2017/12/25. https://doi.org/10.1016/j.bone.2017.12.021

    Article  CAS  PubMed  Google Scholar 

  13. Maridas DE, Rendina-Ruedy E, Le PT, Rosen CJ (2018) Isolation, culture, and differentiation of bone marrow stromal cells and osteoclast progenitors from mice. J Vis Exp (131):56750. https://doi.org/10.3791/56750

Download references

Acknowledgments

This work was funded by NIGMS to A.R.G. through P20GM121301, Phase I: Mesenchymal and Neural Regulation of Metabolic Networks, Lucy Liaw, PhD, Program Director.

Disclosure Statement: The authors have nothing to disclose

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyonya R. Guntur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, L., Rosen, C.J., Guntur, A.R. (2021). Mitochondrial Function and Metabolism of Cultured Skeletal Cells. In: Hilton, M.J. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 2230. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1028-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1028-2_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1027-5

  • Online ISBN: 978-1-0716-1028-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics