Skip to main content

DIA-MSE to Study Microglial Function in Schizophrenia

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2228))

  • 3387 Accesses

Abstract

Here, we describe a proteomic pipeline to use a human microglial cell line as a biological model to study schizophrenia. In order to maximize the proteome coverage, we apply two-dimensional liquid chromatography coupled with ultra-definition MSE mass spectrometry (LC-UDMSE) using a data-independent acquisition (DIA) approach, with an optimization of drift time collision energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2014) WHO |(2014) WHO | Schizophrenia

  2. Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749

    Article  CAS  Google Scholar 

  3. Kahn RS, Sommer IE, Murray RM et al (2015) Schizophrenia. Nat Rev Dis Primers 1:15,067

    Article  Google Scholar 

  4. Owen MJ, O’Donovan MC, Thapar A et al (2011) Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 198:173–175

    Article  Google Scholar 

  5. Borrell J (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–215

    Article  CAS  Google Scholar 

  6. Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323

    Article  Google Scholar 

  7. Estes ML, McAllister AK (2016) Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–777

    Article  CAS  Google Scholar 

  8. Mattei D, Ivanov A, Ferrai C et al (2017) Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry 7:e1120

    Article  CAS  Google Scholar 

  9. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179:292–311

    Article  CAS  Google Scholar 

  10. Bloomfield PS, Selvaraj S, Veronese M et al (2016) Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry 173:44–52

    Article  Google Scholar 

  11. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  Google Scholar 

  12. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium (2015) Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 18:199–209

    Article  Google Scholar 

  13. Sekar A, Bialas AR, de Rivera H et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183

    Article  CAS  Google Scholar 

  14. Xu J, Sun J, Chen J et al (2012) RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia. BMC Genomics 13(Suppl 8):S2

    Article  Google Scholar 

  15. Velásquez E, Martins-de-Souza D, Velásquez I et al (2019) Quantitative subcellular proteomics of the orbitofrontal cortex of schizophrenia patients. J Proteome Res 18:4240

    Article  Google Scholar 

  16. Martins-de-Souza D, Gattaz WF, Schmitt A et al (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:151–163

    Article  Google Scholar 

  17. de Witte L, Tomasik J, Schwarz E et al (2014) Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 154:23–29

    Article  Google Scholar 

  18. Li Y, Zhou K, Zhang Z et al (2012) Label-free quantitative proteomic analysis reveals dysfunction of complement pathway in peripheral blood of schizophrenia patients: evidence for the immune hypothesis of schizophrenia. Mol BioSyst 8:2664–2671

    Article  CAS  Google Scholar 

  19. Zuccoli GS, Saia-Cereda VM, Nascimento JM et al (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:493

    Article  Google Scholar 

  20. Saia-Cereda VM, Cassoli JS, Martins-de-Souza D et al (2017) Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur Arch Psychiatry Clin Neurosci 267:3–17

    Article  Google Scholar 

  21. Yates JR 3rd (2013) The revolution and evolution of shotgun proteomics for large-scale proteome analysis. J Am Chem Soc 135:1629–1640

    Article  CAS  Google Scholar 

  22. Ludwig C, Gillet L, Rosenberger G et al (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126

    Article  Google Scholar 

  23. Silva JC, Denny R, Dorschel CA et al (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200

    Article  CAS  Google Scholar 

  24. Silva JC, Gorenstein MV, Li G-Z et al (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    Article  CAS  Google Scholar 

  25. Silva JC, Denny R, Dorschel C et al (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5:589–607

    Article  CAS  Google Scholar 

  26. Geromanos SJ, Hughes C, Ciavarini S et al (2012) Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples. Anal Bioanal Chem 404:1127–1139

    Article  CAS  Google Scholar 

  27. Distler U, Kuharev J, Navarro P et al (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11:167–170

    Article  CAS  Google Scholar 

  28. Distler U, Kuharev J, Navarro P et al (2016) Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc 11:795–812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GRO and DMS would like to thank FAPESP for the

Funding (under grant numbers 18/01410-1, 18/03673-0, 17/25588-1, 19/00098-7).

Conflicts of Interest: The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Martins-de-Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reis-de-Oliveira, G., Carregari, V.C., Martins-de-Souza, D. (2021). DIA-MSE to Study Microglial Function in Schizophrenia. In: Marcus, K., Eisenacher, M., Sitek, B. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 2228. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1024-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1024-4_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1023-7

  • Online ISBN: 978-1-0716-1024-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics