Skip to main content

Epigenetic Analysis in Ewing Sarcoma

  • Protocol
  • First Online:
Book cover Ewing Sarcoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2226))

Abstract

Ewing sarcoma is a highly malignant tumor characterized by a chromosomal translocation that modifies the activity of an ETS family transcription factor. The most prevalent translocation product, EWSR1-FLI1, exploits a permissive and unique chromatin environment of stem cells, and transforms them into an oncogenic state through alterations to gene expression and gene regulatory programs. Though the transformation ability of, and subsequent reliance on EWSR1-FLI1 had been previously described, the advent of genome-wide sequencing technologies allowed for the specific identification of genomic loci and genes targeted by EWSR1-FLI1. Furthermore, the characterization of the chromatin environment in these, and other, cell types could not have been accomplished without the computational and statistical methods that enable large-scale data analysis. Here, we outline in detail the tools and steps needed to analyze genome-wide transcription factor binding and histone modification data (chromatin immunoprecipitation, ChIP-seq), as well as chromatin accessibility data (assay for transposase-accessible chromatin, ATAC-seq) from Ewing sarcoma cells. Our protocol includes a compilation of data quality control metrics, trimming of adapter sequences, reference genome alignment, identification of enriched sites (“peaks”) and motifs, as well as annotation and visualization, using real-world data. These steps should provide a platform on which molecular biologists can build their own analytical pipelines to aid in data processing, analysis, and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grünewald TGP, Cidre-Aranaz F, Surdez D et al (2018) Ewing sarcoma. Nat Rev Dis Primers 4:5

    Article  PubMed  Google Scholar 

  2. Delattre O, Zucman J, Plougastel B et al (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165

    Article  CAS  PubMed  Google Scholar 

  3. Sorensen PH, Lessnick SL, Lopez-Terrada D et al (1994) A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor. ERG, Nature Genetics 6:146–151

    Article  CAS  PubMed  Google Scholar 

  4. Jeon IS, Davis JN, Braun BS et al (1995) A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10:1229–1234

    CAS  PubMed  Google Scholar 

  5. Patel M, Simon JM, Iglesia MD et al (2012) Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res 22:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei GH, Badis G, Berger MF et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29:2147–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gangwal K, Close D, Enriquez CA et al (2010) Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing's sarcoma. Genes Cancer 1:177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guillon N, Tirode F, Boeva V et al (2009) The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One 4:e4932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Riggi N, Knoechel B, Gillespie SM et al (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26:668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomez NC, Hepperla AJ, Dumitru R et al (2016) Widespread chromatin accessibility at repetitive elements links stem cells with human cancer. Cell Rep 17:1607–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  12. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  13. Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21:421–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber CM, Henikoff S (2014) Histone variants: dynamic punctuation in transcription. Genes Dev 28:672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Orphanides G, LeRoy G, Chang CH et al (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116

    Article  CAS  PubMed  Google Scholar 

  16. Vignali M, Hassan AH, Neely KE et al (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fry CJ, Peterson CL (2001) Chromatin remodeling enzymes: who's on first? Curr Biol 11:R185–R197

    Article  CAS  PubMed  Google Scholar 

  18. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Riggi N, Suva ML, Suva D et al (2008) EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 68:2176–2185

    Article  CAS  PubMed  Google Scholar 

  20. Cidre-Aranaz F, Grünewald TGP, Surdez D et al (2017) EWS-FLI1-mediated suppression of the RAS-antagonist Sprouty 1 (SPRY1) confers aggressiveness to Ewing sarcoma. Oncogene 36:766–776

    Article  CAS  PubMed  Google Scholar 

  21. Kinsey M, Smith R, Lessnick SL (2006) NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma. Mol Cancer Res 4:851–859

    Article  CAS  PubMed  Google Scholar 

  22. García-Aragoncillo E, Carrillo J, Lalli E et al (2008) DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells. Oncogene 27:6034–6043

    Article  PubMed  CAS  Google Scholar 

  23. Gangwal K, Lessnick SL (2008) Microsatellites are EWS/FLI response elements: genomic “junk” is EWS/FLI's treasure. Cell Cycle 7:3127–3132

    Article  CAS  PubMed  Google Scholar 

  24. E.P. Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  25. Thurman RE, Rynes E, Humbert R et al (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  27. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  28. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giresi PG, Lieb JD (2009) Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simon JM, Giresi PG, Davis IJ et al (2012) Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 7:256–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boyle AP, Davis S, Shulha HP et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor Protocols 2010:pdb.prot5384

    Article  PubMed  PubMed Central  Google Scholar 

  33. Crawford GE, Holt IE, Whittle J et al (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buenrostro JD, Wu B, Chang HY et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9

    Article  Google Scholar 

  36. Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jiang H, Lei R, Ding S-W et al (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182–112

    Article  PubMed  PubMed Central  Google Scholar 

  39. S. Andrews (2012). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  40. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Faust GG, Hall IM (2014) SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30:2503–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R.C.T. (2019). R: A Language and Environment for Statistical Computing. https://www.R-project.org/

  45. R.T. (2015). RStudio: Integrated Development Environment for R. http://www.rstudio.com/

  46. Ramirez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huber W, Carey VJ, Gentleman R et al (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ou J, Liu H, Yu J et al (2018) ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC Genomics 19:169–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. M. Morgan, H. Pagès, V. Obenchain, et al. (2019)., Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import, http://bioconductor.org/packages/Rsamtools

  51. T.B.D. Team (2015), BSgenome.Hsapiens.UCSC.hg38: Full genome sequences for Homo sapiens (UCSC version hg38

    Google Scholar 

  52. Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu LJ, Gazin C, Lawson ND et al (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11:237–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lawrence M, Gentleman R, Carey V (2009) rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25:1841–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Y Yang and L Whitehouse for constructive comments. J.M.S. was supported by The Eunice Kennedy Shriver National Institute of Child Health and Human Development (U54HD079124) and NINDS (P30NS045892). N.C.G. holds a Postdoctoral Enrichment Program Award from the Burroughs Wellcome Fund and is supported by a NIH Postdoctoral Ruth L. Kirschstein National Research Service Award F32CA221353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simon, J.M., Gomez, N.C. (2021). Epigenetic Analysis in Ewing Sarcoma. In: Cidre-Aranaz, F., G. P. Grünewald, T. (eds) Ewing Sarcoma . Methods in Molecular Biology, vol 2226. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1020-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1020-6_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1019-0

  • Online ISBN: 978-1-0716-1020-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics