Skip to main content

Ewing Sarcoma PDX Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2226))

Abstract

Ewing sarcoma (EWS) is a rare malignant pediatric tumor and patient derived xenografts (PDXs) could represent a possibility to increase the number of available models to study this disease. Compared to cell derived xenografts (CDX), PDXs are reported to better recapitulate tumor microenvironment, heterogeneity, genetic and epigenetic features and are considered reliable models for their better predictive value when comparing preclinical efficacy and treatment response in patients. In this chapter, we extensively describe a method for generating Ewing sarcoma PDX models, for their validation and molecular characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rygaard J (1969) Immunobiology of the mouse mutant “nude”. Preliminary investigations. Acta Pathol Microbiol Scand 77:761–762

    Article  CAS  Google Scholar 

  2. Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumour to “nude” mice. Acta Pathol Microbiol Scand 77:758–760

    Article  CAS  Google Scholar 

  3. Fiebig HH, Schuchhardt C, Henss H et al (1984) Comparison of tumor response in nude mice and in the patients. Behring Inst Mitt 74:343–352

    Google Scholar 

  4. Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431. https://doi.org/10.1054/bjoc.2001.1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bruna A, Rueda OM, Greenwood W et al (2016) A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167:260–274.e22. https://doi.org/10.1016/j.cell.2016.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pauli C, Hopkins BD, Prandi D et al (2017) Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 7:462–477. https://doi.org/10.1158/2159-8290.CD-16-1154

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stewart E, Federico SM, Chen X et al (2017) Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549:96–100. https://doi.org/10.1038/nature23647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Izumchenko E, Paz K, Ciznadija D et al (2017) Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol 28:2595–2605. https://doi.org/10.1093/annonc/mdx416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hidalgo M, Bruckheimer E, Rajeshkumar NV et al (2011) A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 10:1311–1316. https://doi.org/10.1158/1535-7163.MCT-11-0233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hidalgo M, Amant F, Biankin AV et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013. https://doi.org/10.1158/2159-8290.CD-14-0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nanni P, Landuzzi L, Manara MC et al (2019) Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 9:12174. https://doi.org/10.1038/s41598-019-48634-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanmamed MF, Chester C, Melero I, Kohrt H (2016) Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol 27:1190–1198. https://doi.org/10.1093/annonc/mdw041

    Article  CAS  PubMed  Google Scholar 

  13. Rong S, Oskarsson M, Faletto D et al (1993) Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth Differ 4:563–569

    CAS  PubMed  Google Scholar 

  14. Zhang Y-W, Su Y, Lanning N et al (2005) Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene 24:101–106. https://doi.org/10.1038/sj.onc.1208181

    Article  CAS  PubMed  Google Scholar 

  15. Lu W, Chao T, Ruiqi C et al (2018) Patient-derived xenograft models in musculoskeletal malignancies. J Transl Med 16:107. https://doi.org/10.1186/s12967-018-1487-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Alava E, Lessnick SL, Sorensen PH (2013) In WHO classification of Tumours of soft tissue and bone chapter form fletcher CDM. In: Bridge JA, PCW H, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon

    Google Scholar 

  17. Nascimento AG, Unii KK, Pritchard DJ et al (1980) A clinicopathologic study of 20 cases of large-cell (atypical) Ewing’s sarcoma of bone. Am J Surg Pathol 4:29–36

    Article  CAS  Google Scholar 

  18. Baldauf MC, Orth MF, Dallmayer M et al (2018) Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets. Oncotarget 9:1587–1601. https://doi.org/10.18632/oncotarget.20098

    Article  PubMed  Google Scholar 

  19. Shibuya R, Matsuyama A, Nakamoto M, Shiba E, Kasai T, Hisaoka M (2014) The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 465(5):599–605

    Article  CAS  Google Scholar 

  20. Schneeberger VE, Allaj V, Gardner EE et al (2016) Quantitation of murine stroma and selective purification of the human tumor component of patient-derived xenografts for genomic analysis. PLoS One 11:e0160587. https://doi.org/10.1371/journal.pone.0160587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moyer AM, Yu J, Sinnwell JP et al (2019) Spontaneous murine tumors in the development of patient-derived xenografts: a potential pitfall. Oncotarget 10:3924–3930. https://doi.org/10.18632/oncotarget.27001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang P, Westmoreland SV, Jain RK, Fukumura D (2011) Spontaneous nonthymic tumors in SCID mice. Comp Med 61:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  23. de Plater L, Vincent-Salomon A, Berger F et al (2014) Predictive gene signature of response to the anti-TweakR mAb PDL192 in patient-derived breast cancer xenografts. PLoS One 9:e104227. https://doi.org/10.1371/journal.pone.0104227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peter M, Gilbert E, Delattre O (2001) A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors. Lab Investig 81:905–912

    Article  CAS  Google Scholar 

  25. Tirode F, Surdez D, Ma X et al (2014) Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 4:1342–1353. https://doi.org/10.1158/2159-8290.CD-14-0622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by grants received from the Institut Curie; the INSERM; the Canceropôle Ile-de-France; the Ligue Nationale Contre le Cancer (Equipe labellisée) and projet de Recherche “Enfants, Adolescents et Cancer”; the Institut National du Cancer (PLBIO16-291), the Fondation ARC, the Agence Nationale de la Recherche (ANR-10-EQPX-03, Institut Curie Génomique d’Excellence (ICGex) and the société française de lutte contre les cancers de l’enfant et de l’adolescent. The European Union (ERANET TRANSCAN-2_TORPEDO ER-2015-2360405, to KS, TRANSCAN-2_BRCAddict TRANS-201801292 to DS and KS), H2020-lMI2-JTl-201 5-07 (116064—ITCC P4 to KS and DS). DS is supported by SiRIC (Grant « INCa-DGOS-4654).

We thank Cristina Ghinelli for the graphic support and Dr. Marianna Carrabotta (IRCCS-Istituto Ortopedico Rizzoli) for her technical support with evaluation of the EWSR1-ETS fusion transcript. We also thank all parents, patients, and families that consented to provide samples to establish these models. The materials presented and views expressed here are the responsibility of the authors only. The sponsor takes no responsibility for any use made of the information set out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Manara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Surdez, D., Landuzzi, L., Scotlandi, K., Manara, M.C. (2021). Ewing Sarcoma PDX Models. In: Cidre-Aranaz, F., G. P. Grünewald, T. (eds) Ewing Sarcoma . Methods in Molecular Biology, vol 2226. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1020-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1020-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1019-0

  • Online ISBN: 978-1-0716-1020-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics