Skip to main content

Cellular and Biochemical Analysis of Bronchoalveolar Lavage Fluid from Murine Lungs

  • Protocol
  • First Online:
Animal Models of Allergic Disease

Abstract

Bronchoalveolar lavage (BAL) is a technique used to collect the contents of the airways. The fluid recovered, called BAL fluid (BALF), serves as a dynamic tool to identify various disease pathologies ranging from asthma to infectious diseases to cancer in the lungs. A wide array of tests can be performed with BALF, including total and differential leukocyte counts (DLC), enzyme-linked immunosorbent assays (ELISA) or flow-cytometric quantitation of inflammatory mediators, such as cytokines, chemokines and adhesion molecules, and assessment of nitrate and nitrite content for estimation of nitric oxide synthase (NOS) activity. Here, we describe a detailed procedure for the collection of BALF for a variety of downstream usages, including DLC by cytological and flow-cytometry-based methods, multiplex cytokine analysis by flow cytometry, and NOS activity analysis by determining nitrate and nitrite levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harbeck RJ (1998) Immunophenotyping of bronchoalveolar lavage lymphocytes. Clin Diagn Lab Immunol 5(3):271–277

    Article  CAS  Google Scholar 

  2. Costabel U, Guzman J, Bonella F, Oshimo S (2007) Bronchoalveolar lavage in other interstitial lung diseases. Semin Respir Crit Care Med 28(5):514–524

    Article  Google Scholar 

  3. Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, Drent M, Haslam PL, Kim DS, Nagai S, Rottoli P, Saltini C, Selman M, Strange C, Wood B, American Thoracic Society Committee on BALiILD (2012) An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med 185(9):1004–1014

    Article  Google Scholar 

  4. Hunninghake GW, Gadek JE, Kawanami O, Ferrans VJ, Crystal RG (1979) Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage. Am J Pathol 97(1):149–206

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ambhore NS, Katragadda R, Kalidhindi RSR, Thompson MA, Pabelick CM, Prakash Y, Sathish V (2018) Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol 476:37–47

    Article  CAS  Google Scholar 

  6. Loganathan J, Pandey R, Ambhore NS, Borowicz P, Sathish V (2019) Laser-capture microdissection of murine lung for differential cellular RNA analysis. Cell Tissue Res 376(3):425–432

    Article  CAS  Google Scholar 

  7. Ambhore NSKR, Pabelick CM, Hawse JA, Prakash YS, Sathish V (2019) Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NFκB pathway. FASEB J 33(12):13935–13950

    Article  CAS  Google Scholar 

  8. Kalidhindi RSR, Katragadda R, Beauchamp KL, Pabelick CM, Prakash Y, Sathish V (2019) Androgen receptor-mediated regulation of intracellular calcium in human airway smooth muscle cells. Cell Physiol Biochem 53:215–228

    Article  CAS  Google Scholar 

  9. Chamberlain DW, Braude AC, Rebuck AS (1987) A critical evaluation of bronchoalveolar lavage. Criteria for identifying unsatisfactory specimens. Acta Cytol 31(5):599–605

    CAS  PubMed  Google Scholar 

  10. Levy H, Horak DA, Lewis MI (1988) The value of bronchial washings and bronchoalveolar lavage in the diagnosis of lymphangitic carcinomatosis. Chest 94(5):1028–1030

    Article  CAS  Google Scholar 

  11. Weynants P, Cordier JF, Cellier CC, Pages J, Loire R, Brune J (1985) Primary immunocytoma of the lung: the diagnostic value of bronchoalveolar lavage. Thorax 40(7):542–543

    Article  CAS  Google Scholar 

  12. Poletti V, Poletti G, Murer B, Saragoni L, Chilosi M (2007) Bronchoalveolar lavage in malignancy. Semin Respir Crit Care Med 28(5):534–545

    Article  Google Scholar 

  13. Baughman RP, Dohn MN, Loudon RG, Frame PT (1991) Bronchoscopy with bronchoalveolar lavage in tuberculosis and fungal infections. Chest 99(1):92–97

    Article  CAS  Google Scholar 

  14. Yarova PL, Stewart AL, Sathish V, Britt RD Jr, Thompson MA, APP L, Freeman M, Aravamudan B, Kita H, Brennan SC, Schepelmann M, Davies T, Yung S, Cholisoh Z, Kidd EJ, Ford WR, Broadley KJ, Rietdorf K, Chang W, Bin Khayat ME, Ward DT, Corrigan CJ, TW JP, Kemp PJ, Pabelick CM, Prakash YS, Riccardi D (2015) Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Sci Transl Med 7(284):284ra60

    Article  Google Scholar 

  15. Ambhore NS, Kalidhindi RSR, Loganathan J, Venkatachalem S (2019) Role of differential estrogen receptor activation on airway hyperreactivity and remodeling in a murine model of asthma. Am J Respir Cell Mol Biol 61(4):469–480

    Article  CAS  Google Scholar 

  16. Britt RD Jr, Thompson MA, Wicher SA, Manlove LJ, Roesler A, Fang YH, Roos C, Smith L, Miller JD, Pabelick CM, Prakash YS (2019) Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J 33(2):3024–3034

    Article  CAS  Google Scholar 

  17. Kalidhindi RSR, Ambhore NS, Bhallamudi S, Loganathan J, Sathish V (2020) Role of estrogen receptors α and β in a murine model of asthma: exacerbated airway hyperresponsiveness and remodeling in ERβ knockout mice. Front Pharmacol 10:1499

    Article  Google Scholar 

  18. King TE (1992) The handling and analysis of bronchoalveolar lavage specimens. In: Baughman RP (ed) Bronchoalveolar lavage. Mosby Year Book, St. Louis, MO, pp 3–29

    Google Scholar 

  19. Linder J, Rennard SI (1988) Bronchoalveolar lavage. American Society of Clinical Pathologists Press, Chicago, IL

    Google Scholar 

  20. Stanley M (1991) Qualitative and quantitative cytology in control subjects. Bronchoalveolar lavage: cytology and clinical applications. Igaku-Shoin, New York, pp 27–65

    Google Scholar 

  21. Barrios R (2008) Animal models of lung disease. In: Zander DS, Popper HH, Jagirdar J, Haque AK, Cagle PT, Barrios R (eds) Molecular pathology of lung diseases. Springer, New York, NY, pp 144–149

    Chapter  Google Scholar 

  22. Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM (2013) Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 49(2):167–179

    Article  CAS  Google Scholar 

  23. Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK (2017) Exploring animal models that resemble idiopathicp fibrosis. Front Med (Lausanne) 4:118–118

    Article  Google Scholar 

  24. Sharma SK, Pande JN, Verma K, Guleria JS (1989) Bronchoalveolar lavage fluid (BALF) analysis in interstitial lung diseases—a 7-year experience. Indian J Chest Dis Allied Sci 31(3):187–196

    CAS  PubMed  Google Scholar 

  25. (1989) Technical recommendations and guidelines for bronchoalveolar lavage (BAL). Report of the European Society of Pneumology Task Group. Eur Respir J 2(6):561–585

    Google Scholar 

  26. (1990) Bronchoalveolar lavage constituents in healthy individuals, idiopathic pulmonary fibrosis, and selected comparison groups. The BAL Cooperative Group Steering Committee. Am Rev Respir Dis 141(5 Pt 2):S169–S202

    Google Scholar 

  27. Kirkham P, Rahman I (2006) Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 111(2):476–494

    Article  CAS  Google Scholar 

  28. Ricciardolo FL, Di Stefano A, Sabatini F, Folkerts G (2006) Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 533(1–3):240–252

    Article  CAS  Google Scholar 

  29. van der Vliet A, Eiserich JP, Shigenaga MK, Cross CE (1999) Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am J Respir Crit Care Med 160(1):1–9

    Article  Google Scholar 

  30. Raju KR, Kumar MN, Gupta S, Naga ST, Shankar JK, Murthy V, Madhunapanthula SR, Mulukutla S, Ambhore NS, Tummala S, Vishnuvarthan VJ, Azam A, Elango K (2014) 5-Aminosalicylic acid attenuates allergen-induced airway inflammation and oxidative stress in asthma. Pulm Pharmacol Ther 29(2):209–216

    Article  CAS  Google Scholar 

  31. Raju KR, Ambhore NS, Mulukutla S, Gupta S, Murthy V, Kumar MN, Madhunapantula SR, Kuppuswamy G, Elango K (2016) Salicylic acid derivatives as potential anti asthmatic agents using disease responsive drug delivery system for prophylactic therapy of allergic asthma. Med Hypotheses 87:75–79

    Article  Google Scholar 

  32. Gupta S, Duraiswamy B, Nataraj SM, Raju R, Babu U, Kumar S, Porwal O, Gupta R (2014) Inhibitory potential of Yucca gloriosa L. extract and isolated gloriosaol isomeric mixture on ovalbumin induced airway hyperresponsiveness in Balb/C mice. Clinic Pharmacol Biopharmaceut 2:002

    Google Scholar 

  33. Gupta S, Basavan D, Nataraj SKM, Raju KRS, Babu U, Sharath Kumar LM, Gupta R (2014) Assessment of inhibitory potential of Pothos scandens L. on ovalbumin-induced airway hyper responsiveness in balb/c mice. Int Immunopharmacol 18(1):151–162

    Article  Google Scholar 

  34. Ambigapathy G, Schmit T, Mathur RK, Nookala S, Bahri S, Pirofski LA, Khan MN (2019) Double-edged role of interleukin 17A in Streptococcus pneumoniae pathogenesis during influenza virus coinfection. J Infect Dis 220(5):902–912

    Article  CAS  Google Scholar 

  35. Toward TJ, Broadley KJ (2000) Airway reactivity, inflammatory cell influx and nitric oxide in guinea-pig airways after lipopolysaccharide inhalation. Br J Pharmacol 131(2):271–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01-HL123494, R01-HL123494-02S1, R01-HL146705 (Venkatachalem).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatachalem Sathish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kalidhindi, R.S.R., Ambhore, N.S., Sathish, V. (2021). Cellular and Biochemical Analysis of Bronchoalveolar Lavage Fluid from Murine Lungs. In: Nagamoto-Combs, K. (eds) Animal Models of Allergic Disease. Methods in Molecular Biology, vol 2223. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1001-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1001-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1000-8

  • Online ISBN: 978-1-0716-1001-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics