Skip to main content

Robot-Assisted Pedicle Screw Placement

  • Protocol
  • First Online:
Neurosurgical Robotics

Part of the book series: Neuromethods ((NM,volume 162))

Abstract

With new technological advancements in spine surgery, come accompanying expectations regarding the association between the incremental improvements of the surgical technique and its ability to provide superior patient outcomes and more efficient surgical workflows at lower cost. In many surgical fields, robots are still being tested on an experimental level. In others, such as urological surgery and gastrointestinal surgery, robots are a routine part of subspecialty practice. Spinal surgeons have begun to adopt the available robotic systems into their daily workflow. Yet, despite the majority of clinical results showing equally high or even higher accuracy for robot-assisted pedicle screw instrumentation and reduced radiation exposure, the evidence for long-term clinical outcome is still scarce. The chapter provides an overview of the existing robotic platforms and the workflow in spine surgery, with an emphasis on minimal invasive fusion procedures, where integration of robotic systems might be especially beneficial. Future technological improvements in these robotic systems specific to spine surgery, the integration of intraoperative imaging modalities, and the awareness of a significant learning curve will provide a cost-effective surgical tool that facilitates better clinical results with decreased surgical time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly PJ (2002) Neurosurgical robotics. Clin Neurosurg 49:136–158

    PubMed  Google Scholar 

  2. Louw DF, Fielding T, McBeth PB, Gregoris D, Newhook P, Sutherland GR (2004) Surgical robotics: a review and neurosurgical prototype development. Neurosurgery 54:525–536; discussion 536–7

    Article  PubMed  Google Scholar 

  3. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976) 32:E111–E120

    Article  Google Scholar 

  4. Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 19:370–375

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shin BJ, James AR, Njoku IU, Hartl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122

    Article  PubMed  Google Scholar 

  6. Gelalis ID, Pachos NK, Pakos EE et al (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255

    Article  PubMed  Google Scholar 

  7. Scheufler K-M, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery 69:1307–1316

    Article  PubMed  Google Scholar 

  8. Hu X, Lieberman IH (2014) What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res 472(6):1839–1844

    Article  PubMed  Google Scholar 

  9. Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, Le Gars D, Peltier J (2015 Feb) Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg 122(2):342–352

    Article  PubMed  Google Scholar 

  10. Lefranc M, Peltier J (2015) Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® spine robot with intraoperative flat-panel CT guidance—a cadaver study. J Robot Surg 9(4):331–338

    Article  CAS  PubMed  Google Scholar 

  11. Chenin L, Capel C, Fichten A, Peltier J, Lefranc M (2017) Evaluation of screw placement accuracy in circumferential lumbar arthrodesis using robotic assistance and intraoperative flat-panel computed tomography. World Neurosurg 105:86–94

    Article  PubMed  Google Scholar 

  12. Zygourakis CC, Ahmed AK, Kalb S, Zhu AM, Bydon A, Crawford NR, Theodore N (2018) Technique: open lumbar decompression and fusion with the Excelsius GPS robot. Neurosurg Focus 45(VideoSuppl1):V6

    Article  PubMed  Google Scholar 

  13. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Suppl 1):12–18

    Article  PubMed  Google Scholar 

  14. Togawa D, Kayanja MM, Reinhardt MK, Shoham M, Balter A, Friedlander A et al (2007) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2—Evaluation of system accuracy. Neurosurgery 60:ONS129–ONS139; discussion ONS139

    PubMed  Google Scholar 

  15. Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F et al (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 37:E496–E501

    Article  Google Scholar 

  16. Schizas C, Thein E, Kwiatkowski B, Kulik G (2012) Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg 78:240–245

    PubMed  Google Scholar 

  17. Lieberman IH, Hardenbrook MA, Wang JC, Guyer RD (2012) Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech 25:241–248

    Article  PubMed  Google Scholar 

  18. Sukovich W, Brink-Danan S, Hardenbrook M (2006) Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot 2:114–122

    Article  CAS  PubMed  Google Scholar 

  19. Barzilay Y, Liebergall M, Fridlander A, Knoller N (2006) Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot 2:146–153

    Article  CAS  PubMed  Google Scholar 

  20. Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N et al (2006) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I—technical development and a test case result. Neurosurgery 59:641–650; discussion 641–50

    Article  PubMed  Google Scholar 

  21. Shoham M, Lieberman IH, Benzel EC, Togawa D, Zehavi E, Zilberstein B et al (2007) Robotic assisted spinal surgery—from concept to clinical practice. Comput Aided Surg 12:105–115

    CAS  PubMed  Google Scholar 

  22. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:860–868

    Article  PubMed  PubMed Central  Google Scholar 

  23. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B et al (2010) Clinical acceptance ad accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 35:2109–2115

    Article  Google Scholar 

  24. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14

    Article  CAS  Google Scholar 

  25. Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lücke S, Harders A et al (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) 34:392–398

    Article  Google Scholar 

  26. Hu X, Ohnmeiss DD, Lieberman IH (2013) Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J 22:661–666

    Article  PubMed  Google Scholar 

  27. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645

    Article  CAS  PubMed  Google Scholar 

  28. Schoenmayr R, Kim I-S (2011) Why do I use and recommend the use of navigation? ArgoSpine News J 22:132–135

    Article  Google Scholar 

  29. O’Toole JE, Eichholz KM, Fessler RG (2009) Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine 11:471–476

    Article  PubMed  Google Scholar 

  30. Wang MY, Lerner J, Lesko J, McGirt MJ (2012) Acute hospital costs after minimally invasive versus open lumbar interbody fusion: data from a US national database with 6106 patients. J Spinal Disord Tech 25:324–328

    Article  CAS  PubMed  Google Scholar 

  31. Park P, Foley KT (2008) Minimally invasive transforaminal lumbar interbody fusion with reduction of spondylolisthesis: technique and outcomes after a minimum of 2 years’ follow-up. Neurosurg Focus 25:E16

    Article  PubMed  Google Scholar 

  32. Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J (2010) Comparison of one-level minimally invasive and open transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Eur Spine J 19:1780–1784

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peng CWB, Yue WM, Poh SY, Yeo W, Tan SB (2009) Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976) 34:1385–1389

    Article  Google Scholar 

  34. Weinstein JN, Lurie JD, Tosteson TD, Hanscom B, Tosteson ANA, Blood EA et al (2007) Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med 356:2257–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holly LT, Schwender JD, Rouben DP, Foley KT (2006) Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 20:E6

    Article  PubMed  Google Scholar 

  36. Schwender JD, Holly LT, Rouben DP, Foley KT (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18(Suppl):S1–S6

    Article  PubMed  Google Scholar 

  37. Scheufler K-M, Dohmen H, Vougioukas VI (2007) Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery 60:203–212; discussion 212–3

    Article  PubMed  Google Scholar 

  38. Isaacs RE, Podichetty VK, Santiago P, Sandhu FA, Spears J, Kelly K et al (2005) Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine 3:98–105

    Article  PubMed  Google Scholar 

  39. Schizas C, Tzinieris N, Tsiridis E, Kosmopoulos V (2009) Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience. Int Orthop 33:1683–1688

    Article  PubMed  Google Scholar 

  40. Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976) 35:1615–1620

    Article  Google Scholar 

  41. Karikari IO, Isaacs RE (2010) Minimally invasive transforaminal lumbar interbody fusion: a review of techniques and outcomes. Spine (Phila Pa 1976) 35:S294–S301

    Article  Google Scholar 

  42. Wu RH, Fraser JF, Härtl R (2010) Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine (Phila Pa 1976) 35:2273–2281

    Article  Google Scholar 

  43. Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT (2017) And Yeom JS. Int J Med Robotics Comput Assist Surg 13:e1779

    Article  Google Scholar 

  44. Sexton K, Johnson A, Gotsch A, Hussein AA, Cavuoto L, Guru KA (2018) Anticipation, teamwork and cognitive load: chasing efficiency during robot-assisted surgery. BMJ Qual Saf 27(2):148–154

    Article  PubMed  Google Scholar 

  45. Gillespie BM, Chaboyer W, Fairweather N (2012) Interruptions and miscommunications in surgery: an observational study. AORN J 95(5):576–590

    Article  PubMed  Google Scholar 

  46. Kim H-J et al (2016) A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot 13(3). https://doi.org/10.1002/rcs.1779

  47. Bennett CR, Kelly BP (2013 Aug 9) Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on cadaveric L4-L5 segments. J Biomech 46(12):2087–2092

    Article  PubMed  Google Scholar 

  48. Kelly BP, Bennett CR (2013) Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5). J Biomech 46(11):1948–1954

    Article  PubMed  Google Scholar 

  49. Shweikeh F, Amadio JP, Arnell M, Barnard ZR, Kim TT, Johnson JP, Drazin D (2014) Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus 36(3):E10

    Article  PubMed  Google Scholar 

  50. Härtl R, Lam KS, Wang J, Korge A, Kandziora F, Audigé L (2013) Worldwide survey on the use of navigation in spine surgery. World Neurosurg 79:162–172

    Article  PubMed  Google Scholar 

  51. Ghasem A, Sharma A, Greif DN, Alam M, Maaieh MA (2018) The arrival of robotics in spine surgery: a review of the literature. Spine (Phila Pa 1976) 43(23):1670–1677

    Article  Google Scholar 

  52. Overley SC, Cho SK, Mehta AI, Arnold PM (2017) Navigation and robotics in spinal surgery: where are we now? Neurosurgery 80(3S):S86–S99

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Roser .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Video S1

Illustrative case (MP4 225,835 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roser, F., Hebela, N.M. (2021). Robot-Assisted Pedicle Screw Placement. In: Marcus, H.J., Payne, C.J. (eds) Neurosurgical Robotics. Neuromethods, vol 162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0993-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0993-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0992-7

  • Online ISBN: 978-1-0716-0993-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics