Skip to main content

Transcriptomic Analysis in the Sea Anemone Nematostella vectensis

  • Protocol
  • First Online:
Developmental Biology of the Sea Urchin and Other Marine Invertebrates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2219))

Abstract

The sea anemone Nematostella vectensis is an emerging research model to study embryonic development and regeneration at the molecular and global transcriptomic level. Transcriptomics analysis is now routinely used to detect differential expression at the genome level. Here we present the latest procedures for isolating high-quality RNA required for next generation sequencing, as well as methods and resources for quantifying transcriptomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hand C, Uhlinger KR (1992) The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 182(2):169–176

    Article  CAS  PubMed  Google Scholar 

  2. Reitzel A, Burton P, Krone C, Finnerty J (2007) Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission. Invertebr Biol 126(2):99–112

    Article  Google Scholar 

  3. Passamaneck YJ, Martindale MQ (2012) Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 12(1):1–1

    Article  Google Scholar 

  4. Bossert PE, Dunn MP, Thomsen GH (2013) A staging system for the regeneration of a polyp from the aboral physa of the anthozoan cnidarian Nematostella vectensis. Dev Dyn 242:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amiel AR, Johnston HT, Nedoncelle K, Warner JF, Ferreira S, Röttinger E (2015) Characterization of morphological and cellular events underlying oral regeneration in the sea anemone, Nematostella vectensis. Int J Mol Sci 16(12):28449–28471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94

    Article  CAS  PubMed  Google Scholar 

  7. Schwaiger M, Schonauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF et al (2014) Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res 24(4):639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 135(10):1761–1769

    Article  CAS  PubMed  Google Scholar 

  9. Röttinger E, Dahlin P, Martindale MQ (2012) A framework for the establishment of a Cnidarian Gene Regulatory Network for “Endomesoderm” specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 8(12):e1003164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Layden MJ, Röttinger E, Wolenski FS, Gilmore TD, Martindale MQ (2013) Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nat Protoc 8(5):924–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ (2017) Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Development 144(16):2951–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraus Y, Aman A, Technau U, Genikhovich G (2016) Pre-bilaterian origin of the blastoporal axial organizer. Nat Commun 7:11694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ikmi A, McKinney SA, Delventhal KM, Gibson MC (2014) TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun 5:5486

    Article  CAS  PubMed  Google Scholar 

  14. Fischer A, Smith J. Nematostella high-density RNAseq time-course. 2013

    Google Scholar 

  15. Tulin S, Aguiar D, Istrail S, Smith J (2013) A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. EvoDevo 4(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Helm RR, Siebert S, Tulin S, Smith J, Dunn CW (2013) Characterization of differential transcript abundance through time during Nematostella vectensis development. BMC Genomics 14(1):266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E (2018) NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 145(10):dev162867

    Article  PubMed  CAS  Google Scholar 

  18. Fredman D, Schwaiger M, Rentzsch F, Rentzsch F, Technau U (2013) Nematostella vectensis transcriptome and gene models v2.0. 1–1

    Google Scholar 

  19. Wingett SW, Andrews S (2018) FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7:1338

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBNetjournal 17:10–12

    Google Scholar 

  22. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  24. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  PubMed  Google Scholar 

  27. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol BioMed Central 15(12):550

    Article  CAS  Google Scholar 

  29. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  30. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6):882–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aranda PS, LaJoie DM, Jorcyk CL (2012) Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33(2):366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Röttinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Warner, J.F., Röttinger, E. (2021). Transcriptomic Analysis in the Sea Anemone Nematostella vectensis. In: Carroll, D.J., Stricker, S.A. (eds) Developmental Biology of the Sea Urchin and Other Marine Invertebrates. Methods in Molecular Biology, vol 2219. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0974-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0974-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0973-6

  • Online ISBN: 978-1-0716-0974-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics