Skip to main content

Methodology for Whole Mount and Fluorescent RNA In Situ Hybridization in Echinoderms: Single, Double, and Beyond

  • Protocol
  • First Online:
Developmental Biology of the Sea Urchin and Other Marine Invertebrates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2219))

Abstract

Identifying the location of a specific RNA in a cell, tissue, or embryo is essential to understand its function. Here we use echinoderm embryos to demonstrate the power of fluorescence in situ RNA hybridizations to localize sites of specific RNA accumulation in whole mount embryo applications. We add to this technology the use of various probe-labeling technologies to colabel multiple RNAs in one application and we describe protocols for incorporating immunofluorescence approaches to maximize the information obtained in situ. We offer alternatives for these protocols and troubleshooting advice to identify steps in which the procedure may have failed. Overall, echinoderms are wonderfully suited for these technologies, and these protocols are applicable to a wide range of cells, tissues, and embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604. https://doi.org/10.1073/pnas.64.2.600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gall JG (1968) Differential synthesis of the genes for ribosomal RNA during amphibian oögenesis. Proc Natl Acad Sci U S A 60:553–560. https://doi.org/10.1073/pnas.60.2.553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hennig W (1973) Molecular hybridization of DNA and RNA in situ. Int Rev Cytol 36:1–44

    Article  CAS  PubMed  Google Scholar 

  4. Gall JG (2016) The origin of in situ hybridization - a personal history. Methods 98:4–9. https://doi.org/10.1016/j.ymeth.2015.11.026

    Article  CAS  PubMed  Google Scholar 

  5. Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161:529–540

    Article  CAS  PubMed  Google Scholar 

  6. Venezky DL, Angerer LM, Angerer RC (1981) Accumulation of histone repeat transcripts in the sea urchin egg pronucleus. Cell 24:385–391

    Article  CAS  PubMed  Google Scholar 

  7. Angerer LM, Angerer RC (1981) Detection of poly A+ RNA in sea urchin eggs and embryos by quantitative in situ hybridization. Nucleic Acids Res 9:2819–2840. https://doi.org/10.1093/nar/9.12.2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takacs CM, Oliveri P, Poustka AJ, Wang D, Burke RD, Peterson KJ (2004) Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Dev Biol 269(1):152–164

    Google Scholar 

  9. Perillo M, Paganos P, Mattiello T et al (2018) New neuronal subtypes with a “pre-pancreatic” signature in the sea urchin Stongylocentrotus purpuratus. Front Endocrinol (Lausanne) 9:650. https://doi.org/10.3389/fendo.2018.00650

    Article  Google Scholar 

  10. Perillo M, Arnone MI (2014) Characterization of insulin-like peptides (ILPs) in the sea urchin Strongylocentrotus purpuratus: insights on the evolution of the insulin family. Gen Comp Endocrinol 205:68–79. https://doi.org/10.1016/j.ygcen.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  11. Long S, Rebagliati M (2002) Sensitive two-color whole-mount in situ hybridizations using digoxygenin- and dinitrophenol-labeled RNA probes. BioTechniques 32:494–496, 498 passim. https://doi.org/10.2144/02323bm04

    Article  CAS  PubMed  Google Scholar 

  12. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643

    CAS  PubMed  Google Scholar 

  13. Minokawa T, Rast JP, Arenas-Mena C et al (2004) Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr Patterns 4:449–456. https://doi.org/10.1016/j.modgep.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  14. Fresques TM, Wessel GM (2018) Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development 145(2):dev155663. https://doi.org/10.1242/dev.155663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cole AG, Rizzo F, Martinez P et al (2009) Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 136:541–549. https://doi.org/10.1242/dev.029959

    Article  CAS  PubMed  Google Scholar 

  16. Cole AG, Arnone MI (2009) Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox. Gene Expr Patterns 9:324–328. https://doi.org/10.1016/j.gep.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Andrikou C, Iovene E, Rizzo F et al (2013) Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. EvoDevo 4:33. https://doi.org/10.1186/2041-9139-4-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perillo M, Wang YJ, Leach SD, Arnone MI (2016) A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 16:117. https://doi.org/10.1186/s12862-016-0686-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinman VF, Nguyen AT, Davidson EH (2003) Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa. Mech Dev 120:1165–1176

    Article  CAS  PubMed  Google Scholar 

  20. Choi HMT, Calvert CR, Husain N et al (2016) Mapping a multiplexed zoo of mRNA expression. Development 143:3632–3637. https://doi.org/10.1242/dev.140137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitra RD, Shendure J, Olejnik J et al (2003) Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 320:55–65

    Article  CAS  PubMed  Google Scholar 

  22. Lee JH, Daugharthy ER, Scheiman J et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363. https://doi.org/10.1126/science.1250212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Le P, Lim SJ et al (2018) Enhanced mRNA FISH with compact quantum dots. Nat Commun 9:4461. https://doi.org/10.1038/s41467-018-06740-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria I. Arnone or Gary M. Wessel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perillo, M., Paganos, P., Spurrell, M., Arnone, M.I., Wessel, G.M. (2021). Methodology for Whole Mount and Fluorescent RNA In Situ Hybridization in Echinoderms: Single, Double, and Beyond. In: Carroll, D.J., Stricker, S.A. (eds) Developmental Biology of the Sea Urchin and Other Marine Invertebrates. Methods in Molecular Biology, vol 2219. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0974-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0974-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0973-6

  • Online ISBN: 978-1-0716-0974-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics