Skip to main content

Quantifying Cell Proliferation During Regeneration of Aquatic Worms

  • Protocol
  • First Online:
Developmental Biology of the Sea Urchin and Other Marine Invertebrates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2219))

Abstract

Many species of aquatic worms, including members of the phyla Nemertea, Annelida, Platyhelminthes, and Xenacoelomorpha, can regenerate large parts of their body after amputation. In most species, cell proliferation plays key roles in the reconstruction of lost tissues. For example, in annelids and flatworms, inhibition of cell proliferation by irradiation or chemicals prevents regeneration. Cell proliferation also plays crucial roles in growth, body patterning (e.g., segmentation) and asexual reproduction in many groups of aquatic worms. Cell proliferation dynamics in these organisms can be studied using immunohistochemical detection of proteins expressed during proliferation-associated processes or by incorporation and labeling of thymidine analogues during DNA replication. In this chapter, we present protocols for labeling and quantifying cell proliferation by (a) antibody-based detection of either phosphorylated histone H3 during mitosis or proliferating cell nuclear antigen (PCNA) during S-phase, and (b) incorporation of two thymidine analogues, 5′-bromo-2′-deoxyuridine (BrdU) and 5′-ethynyl-2′-deoxyuridine (EdU), detected by immunohistochemistry or inorganic “click” chemistry, respectively. Although these protocols have been developed for whole mounts of small (<2 cm) marine and freshwater worms, they can also be adapted for use in larger specimens or tissue sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gline SE, Kuo D-H, Stolfi A, Weisblat DA (2009) High resolution cell lineage tracing reveals developmental variability in leech. Dev Dyn 238:3139–3151

    Article  CAS  Google Scholar 

  2. Zantke J, Bannister S, Rajan VBV, Raible F, Tessmar-Raible K (2014) Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197:19–31

    Article  CAS  Google Scholar 

  3. Zielke N, Edgar BA (2015) FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip Rev Dev Biol 4:469–487

    Article  CAS  Google Scholar 

  4. Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G (2017) Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii. elife 6:e30463

    Article  Google Scholar 

  5. Tadokoro R, Sugio M, Kutsuna J, Tochinai S, Takahashi Y (2006) Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis. Curr Biol 16:1012–1017

    Article  CAS  Google Scholar 

  6. Tweeten KA, Anderson A (2008) Analysis of cell proliferation and migration during regeneration in Lumbriculus variegatus (Clitellata: Lumbriculidae). Bios 79:183–190

    Article  Google Scholar 

  7. Bely AE, Sikes JM (2010) Latent regeneration abilities persist following recent evolutionary loss in asexual annelids. Proc Natl Acad Sci 107:1464–1469

    Article  CAS  Google Scholar 

  8. Bely AE, Sikes JM (2010) Acoel and platyhelminth models for stem-cell research. J Biol 9:14

    Article  Google Scholar 

  9. Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M (2013) Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 4:1915

    Article  Google Scholar 

  10. Zattara EE, Bely AE (2013) Investment choices in post-embryonic development: quantifying interactions among growth, regeneration, and asexual reproduction in the annelid Pristina leidyi. J Exp Zoolog B Mol Dev Evol 320:471–488

    Article  Google Scholar 

  11. Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol 24:1107–1113

    Article  CAS  Google Scholar 

  12. Bird AM, von Dassow G, Maslakova SA (2014) How the pilidium larva grows. EvoDevo 5:13

    Article  Google Scholar 

  13. Szabó R, Ferrier DEK (2014) Cell proliferation dynamics in regeneration of the operculum head appendage in the annelid Pomatoceros lamarckii. J Exp Zoolog B Mol Dev Evol 322:257–268

    Article  Google Scholar 

  14. de Jong DM, Seaver EC (2017) Investigation into the cellular origins of posterior regeneration in the annelid Capitella teleta. Regeneration 5:61–77

    Article  Google Scholar 

  15. Buchwalow IB, Böcker W (2010) Immunohistochemistry: basics and methods. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  16. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  CAS  Google Scholar 

  17. Gurley LR, D’anna JA, Barham SS, Deaven LL, Tobey RA (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 84:1–15

    Article  CAS  Google Scholar 

  18. Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  CAS  Google Scholar 

  19. Miyachi K, Fritzler MJ, Tan EM (1978) Autoantibody to a nuclear antigen in proliferating cells. J Immunol 121:2228–2234

    CAS  PubMed  Google Scholar 

  20. Boehm EM, Gildenberg MS, Washington MT (2016) The many roles of PCNA in eukaryotic DNA replication. The Enzymes 39:231–254

    Article  CAS  Google Scholar 

  21. Niwa N, Akimoto-Kato A, Sakuma M, Kuraku S, Hayashi S (2013) Homeogenetic inductive mechanism of segmentation in polychaete tail regeneration. Dev Biol 381:460–470

    Article  CAS  Google Scholar 

  22. Taylor JH, Woods PS, Hughes WL (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc Natl Acad Sci U S A 43:122–128

    Article  CAS  Google Scholar 

  23. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475

    Article  CAS  Google Scholar 

  24. Dean PN, Dolbeare F, Gratzner H, Rice GC, Gray JW (1984) Cell-cycle analysis using a monoclonal antibody to Brdurd. Cell Prolif 17:427–436

    Article  CAS  Google Scholar 

  25. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105:2415–2420

    Article  CAS  Google Scholar 

  26. Gonchoroff NJ, Katzmann JA, Currie RM et al (1986) S-phase detection with an antibody to bromodeoxyuridine: role of DNase pretreatment. J Immunol Methods 93:97–101

    Article  CAS  Google Scholar 

  27. Ye W, Mairet-Coello G, DiCicco-Bloom E (2007) DNAse I pre-treatment markedly enhances detection of nuclear cyclin-dependent kinase inhibitor p57Kip2 and BrdU double immunostaining in embryonic rat brain. Histochem Cell Biol 127:195–203

    Article  CAS  Google Scholar 

  28. Can anyone recommend an alternative to Click-it EdU labeling kit from Invitrogen? https://www.researchgate.net/post/Can_anyone_recommend_an_alternative_to_Click-it_EdU_labeling_kit_from_Invitrogen

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zattara, E.E., Özpolat, B.D. (2021). Quantifying Cell Proliferation During Regeneration of Aquatic Worms. In: Carroll, D.J., Stricker, S.A. (eds) Developmental Biology of the Sea Urchin and Other Marine Invertebrates. Methods in Molecular Biology, vol 2219. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0974-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0974-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0973-6

  • Online ISBN: 978-1-0716-0974-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics