Skip to main content

Chemical Genetics: Manipulating the Germline with Small Molecules

  • Protocol
  • First Online:
Germline Development in the Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2218))

  • 1055 Accesses

Abstract

Primordial germ cells (PGCs) are the precursor cells that form during early embryogenesis and later differentiate into oocytes or spermatozoa. Abnormal development of PGCs is frequently a causative factor of infertility and germ cell tumors. However, our understanding of PGC development remains insufficient, and we have few pharmacological tools for manipulating PGC development for biological study or therapy. The zebrafish (Danio rerio) embryos provide an excellent in vivo animal model to study PGCs, because zebrafish embryos are transparent and develop outside the mother. Importantly, the model is also amenable to facile chemical manipulations, including scalable screening to discover novel compounds that alter PGC development. This chapter describes methodologies for manipulating the germline (i.e., PGCs) with small molecules and for monitoring PGC development. Utilizing the 3′UTR of PGC marker genes such as nanos3 and ddx4/vasa is a key component of these methodologies, which consist of expressing fluorescent or luminescent proteins in PGCs, treatment with small molecules, and quantitative observation of PGC development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strome S, Updike D (2015) Specifying and protecting germ cell fate. Nat Rev Mol Cell Biol 16:406–416. https://doi.org/10.1038/nrm4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siddiqui NU, Li X, Luo H et al (2012) Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells. Genome Biol 13:R11. https://doi.org/10.1186/gb-2012-13-2-r11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lebedeva LA, Yakovlev KV, Kozlov EN et al (2018) Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 53:579–595. https://doi.org/10.1080/10409238.2018.1506733

    Article  CAS  PubMed  Google Scholar 

  4. Seydoux G, Dunn MA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124:2191–2201

    CAS  PubMed  Google Scholar 

  5. Yamaguchi S, Kimura H, Tada M et al (2005) Nanog expression in mouse germ cell development. Gene Expr Patterns 5:639–646. https://doi.org/10.1016/j.modgep.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  6. Fang F, Angulo B, Xia N et al (2018) A PAX5–OCT4–PRDM1 developmental switch specifies human primordial germ cells. Nat Cell Biol 20:655. https://doi.org/10.1038/s41556-018-0094-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Subtelny AO, Eichhorn SW, Chen GR et al (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71. https://doi.org/10.1038/nature13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Winata CL, Łapiński M, Pryszcz L et al (2018) Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 145:dev159566. https://doi.org/10.1242/dev.159566

    Article  CAS  PubMed  Google Scholar 

  9. Kithcart AP, MacRae CA (2018) Zebrafish assay development for cardiovascular disease mechanism and drug discovery. Prog Biophys Mol Biol 138:126–131. https://doi.org/10.1016/j.pbiomolbio.2018.07.002

    Article  PubMed  Google Scholar 

  10. McCarroll MN, Gendelev L, Keiser MJ, Kokel D (2016) Leveraging large-scale behavioral profiling in zebrafish to explore neuroactive polypharmacology. ACS Chem Biol 11:842–849. https://doi.org/10.1021/acschembio.5b00800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oikonomou G, Prober DA (2017) Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 44:80–88. https://doi.org/10.1016/j.conb.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rennekamp AJ, Peterson RT (2015) 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24:58–70. https://doi.org/10.1016/j.cbpa.2014.10.025

    Article  CAS  PubMed  Google Scholar 

  13. Raz E (2003) Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4:690. https://doi.org/10.1038/nrg1154

    Article  CAS  PubMed  Google Scholar 

  14. Paksa A, Raz E (2015) Zebrafish germ cells: motility and guided migration. Curr Opin Cell Biol 36:80–85. https://doi.org/10.1016/j.ceb.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Krøvel AV, Olsen LC (2002) Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Dev 116:141–150. https://doi.org/10.1016/S0925-4773(02)00154-5

    Article  PubMed  Google Scholar 

  16. Jin YN, Schlueter PJ, Jurisch-Yaksi N et al (2018) Noncanonical translation via deadenylated 3′ UTRs maintains primordial germ cells. Nat Chem Biol 14:844. https://doi.org/10.1038/s41589-018-0098-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mishima Y, Giraldez AJ, Takeda Y et al (2006) Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol 16:2135–2142. https://doi.org/10.1016/j.cub.2006.08.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng Des Sel 12:1035–1040. https://doi.org/10.1093/protein/12.12.1035

    Article  CAS  Google Scholar 

  19. Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. BioTechniques 29:590–601. https://doi.org/10.2144/00293rr02

    Article  CAS  PubMed  Google Scholar 

  20. Thorne N, Inglese J, Auld DS (2010) Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 17:646–657. https://doi.org/10.1016/j.chembiol.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngnam N. Jin or Randall T. Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, Y.N., Peterson, R.T. (2021). Chemical Genetics: Manipulating the Germline with Small Molecules. In: Dosch, R. (eds) Germline Development in the Zebrafish. Methods in Molecular Biology, vol 2218. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0970-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0970-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0969-9

  • Online ISBN: 978-1-0716-0970-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics