Skip to main content

Detection of Microcrystals for CryoEM

  • Protocol
  • First Online:
cryoEM

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2215))

Abstract

Here, we present a strategy to identify microcrystals from initial protein crystallization screen experiments and to optimize diffraction quality of those crystals using negative stain transmission electron microscopy (TEM) as a guiding technique. The use of negative stain TEM allows visualization along the process and thus enables optimization of crystal diffraction by monitoring the lattice quality of crystallization conditions. Nanocrystals bearing perfect lattices are seeded and can be used for MicroED as well as growing larger crystals for X-ray and free electron laser (FEL) data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiskerchen M, Muesing MA (1995) Identification and characterization of a temperature-sensitive mutant of human immunodeficiency virus type 1 by alanine scanning mutagenesis of the integrase gene. J Virol 69(1):597–601

    Article  CAS  Google Scholar 

  2. Williams PF, Mynarcik DC, Yu GQ, Whittaker J (1995) Mapping of an NH2-terminal ligand binding site of the insulin receptor by alanine scanning mutagenesis. J Biol Chem 270(7):3012–3016

    Article  CAS  Google Scholar 

  3. Blaber M, Baase WA, Gassner N, Matthews BW (1995) Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. J Mol Biol 246(2):317–330

    Article  CAS  Google Scholar 

  4. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326

    Article  CAS  Google Scholar 

  5. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    Article  CAS  Google Scholar 

  6. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    Article  CAS  Google Scholar 

  7. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555

    Article  CAS  Google Scholar 

  8. Kobilka B, Schertler GF (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol Sci 29(2):79–83

    Article  CAS  Google Scholar 

  9. Stevenson HP, DePonte DP, Makhov AM, Conway JF, Zeldin OB, Boutet S, Calero G, Cohen AE (2014) transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector. Philos Trans R Soc Lond Ser B Biol Sci 369(1647):20130322

    Article  CAS  Google Scholar 

  10. Stevenson HP, Makhov AM, Calero M, Edwards AL, Zeldin OB, Mathews II, Lin G, Barnes CO, Santamaria H, Ross TM, Soltis SM, Khosla C, Nagarajan V, Conway JF, Cohen AE, Calero G (2014) Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proc Natl Acad Sci U S A 111(23):8470–8475

    Article  CAS  Google Scholar 

  11. Barnes CO, Kovaleva EG, Fu X, Stevenson HP, Brewster AS, DePonte DP, Baxter EL, Cohen AE, Calero G (2016) Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Arch Biochem Biophys 602:61–68

    Article  CAS  Google Scholar 

  12. Stevenson HP, Lin G, Barnes CO, Sutkeviciute I, Krzysiak T, Weiss SC, Reynolds S, Wu Y, Nagarajan V, Makhov AM, Lawrence R, Lamm E, Clark L, Gardella TJ, Hogue BG, Ogata CM, Ahn J, Gronenborn AM, Conway JF, Vilardaga JP, Cohen AE, Calero G (2016) Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr D Struct Biol 72(Pt 5):603–615

    Article  CAS  Google Scholar 

  13. Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61(Pt 9):1173–1180

    Article  Google Scholar 

  14. Newman J (2006) A review of techniques for maximizing diffraction from a protein crystal in stilla. Acta Crystallogr D Biol Crystallogr 62(Pt 1):27–31

    Article  Google Scholar 

  15. Russo Krauss I, Sica F, Mattia CA, Merlino A (2012) Increasing the X-ray diffraction power of protein crystals by dehydration: the case of bovine serum albumin and a survey of literature data. Int J Mol Sci 13(3):3782–3800

    Article  Google Scholar 

  16. Lin G, Weiss S, Vergara S, Calero G (2019) Transcription with a laser: radiation-damage-free diffraction of RNA polymerase II crystals. Methods 159–160:23

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01GM112686 (G.C.), P50GM082251 (G.C. and S.W.), and BioXFEL-STC1231306 (S.W). S.V. acknowledges support from grant R01GM097082. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMB or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Calero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weiss, S., Vergara, S., Lin, G., Calero, G. (2021). Detection of Microcrystals for CryoEM. In: Gonen, T., Nannenga, B.L. (eds) cryoEM. Methods in Molecular Biology, vol 2215. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0966-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0966-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0965-1

  • Online ISBN: 978-1-0716-0966-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics