Skip to main content

Mouse Primordial Germ Cells: In Vitro Culture and Conversion to Pluripotent Stem Cell Lines

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

Primordial germ cells (PGCs) are the embryonic precursors of the gametes. Despite decades of research, in vitro culture of PGCs remains a major challenge and has previously relied on undefined components such as serum and feeders. Notably, PGCs cultured for extended periods do not maintain their lineage identity but instead undergo conversion to form pluripotent stem cell lines called embryonic germ (EG) cells in response to LIF/STAT3 signaling. Here we report both established and new methodologies to derive EG cells, in a range of different conditions. We show that basic fibroblast growth factor is not required for EG cell conversion. We detail the steps taken in our laboratory to systematically remove complex components and establish a fully defined protocol that allows efficient conversion of isolated PGCs to pluripotent EG cells. In addition, we demonstrate that PGCs can adhere and proliferate in culture without the support of feeder cells or serum. This may well suggest novel approaches to establishing short-term culture of PGCs in defined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leitch HG, Tang WWC, Surani MA (2013) Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 104:149–187. https://doi.org/10.1016/B978-0-12-416027-9.00005-X

    Article  PubMed  CAS  Google Scholar 

  2. Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551. https://doi.org/10.1038/359550a0

    Article  PubMed  CAS  Google Scholar 

  3. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    Article  CAS  Google Scholar 

  4. Labosky PA, Barlow DP, Hogan BL (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120:3197–3204

    PubMed  CAS  Google Scholar 

  5. Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626–628. https://doi.org/10.1006/dbio.1994.1058

    Article  PubMed  CAS  Google Scholar 

  6. Leitch HG, McEwen KR, Turp A et al (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316. https://doi.org/10.1038/nsmb.2510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Donovan PJ (1994) Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 29:189–225. https://doi.org/10.1016/s0070-2153(08)60551-7

    Article  PubMed  CAS  Google Scholar 

  8. de Felici M (2004) Experimental approaches to the study of primordial germ cell lineage and proliferation. Hum Reprod Update 10:197–206. https://doi.org/10.1093/humupd/dmh020

    Article  PubMed  Google Scholar 

  9. de Felici M, Pesce M, Giustiniani Q, Di Carlo A (1998) In vitro adhesiveness of mouse primordial germ cells to cellular and extracellular matrix component substrata. Microsc Res Tech 43:258–264. https://doi.org/10.1002/(SICI)1097-0029(19981101)43:3<258::AID-JEMT8>3.0.CO;2-1

    Article  PubMed  Google Scholar 

  10. Matsui Y, Toksoz D, Nishikawa S et al (1991) Effect of steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353:750–752. https://doi.org/10.1038/353750a0

    Article  PubMed  CAS  Google Scholar 

  11. Mahakali Zama A, Hudson FP, Bedell MA (2005) Analysis of hypomorphic KitlSl mutants suggests different requirements for KITL in proliferation and migration of mouse primordial germ cells. Biol Reprod 73:639–647. https://doi.org/10.1095/biolreprod.105.042846

    Article  PubMed  CAS  Google Scholar 

  12. Besmer P, Manova K, Duttlinger R et al (1993) The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl:125–137

    Google Scholar 

  13. Stevens LC (1983) The origin and development of testicular, ovarian, and embryo-derived teratomas. In: Cold Spring Harbor conferences on cell proliferation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 23–36

    Google Scholar 

  14. Leitch HG, Okamura D, Durcova-Hills G et al (2014) On the fate of primordial germ cells injected into early mouse embryos. Dev Biol 385:155–159. https://doi.org/10.1016/j.ydbio.2013.11.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Durcova-Hills G, Tang F, Doody G et al (2008) Reprogramming primordial germ cells into pluripotent stem cells. PLoS One 3:e3531. https://doi.org/10.1371/journal.pone.0003531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Durcova-Hills G, Adams IR, Barton SC et al (2006) The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24:1441–1449. https://doi.org/10.1634/stemcells.2005-0424

    Article  PubMed  CAS  Google Scholar 

  17. Koshimizu U, Taga T, Watanabe M et al (1996) Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development 122:1235–1242

    PubMed  CAS  Google Scholar 

  18. Labosky PA, Hogan BLM (2008) Mouse primordial germ cells: isolation and in vitro culture. Methods Mol Biol 461:187–199. https://doi.org/10.1007/978-1-60327-483-8_12

    Article  PubMed  CAS  Google Scholar 

  19. Matsui Y, Takehara A, Tokitake Y et al (2014) The majority of early primordial germ cells acquire pluripotency by AKT activation. Development 141(23):4457–4467. https://doi.org/10.1242/dev.113779

    Article  PubMed  CAS  Google Scholar 

  20. Farini D, Scaldaferri ML, Iona S et al (2005) Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev Biol 285:49–56. https://doi.org/10.1016/j.ydbio.2005.06.036

    Article  PubMed  CAS  Google Scholar 

  21. de Felici M (2011) Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution. Stem Cells Int 2011:425863. https://doi.org/10.4061/2011/425863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kimura T, Nakano T (2011) Induction of pluripotency in primordial germ cells. Histol Histopathol 26:643–650. https://doi.org/10.14670/HH-26.643

    Article  PubMed  Google Scholar 

  23. Nagamatsu G, Kosaka T, Saito S et al (2013) Induction of pluripotent stem cells from primordial germ cells by single reprogramming factors. Stem Cells 31:479–487. https://doi.org/10.1002/stem.1303

    Article  PubMed  CAS  Google Scholar 

  24. Nagamatsu G, Saito S, Takubo K, Suda T (2015) Integrative analysis of the acquisition of pluripotency in PGCs reveals the mutually exclusive roles of Blimp-1 and AKT signaling. Stem Cell Reports:1–29. https://doi.org/10.1016/j.stemcr.2015.05.007

  25. Yoshimizu T, Sugiyama N, de Felice M et al (1999) Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Develop Growth Differ 41:675–684. https://doi.org/10.1046/j.1440-169x.1999.00474.x

  26. Ying Q-L, Stavridis M, Griffiths D et al (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186. https://doi.org/10.1038/nbt780

    Article  PubMed  CAS  Google Scholar 

  27. Majumdar MK, Feng L, Medlock E et al (1994) Identification and mutation of primary and secondary proteolytic cleavage sites in murine stem cell factor cDNA yields biologically active, cell-associated protein. J Biol Chem 269:1237–1242

    PubMed  CAS  Google Scholar 

  28. Ohta H, Kurimoto K, Okamoto I et al (2017) In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J 36:1888–1907. https://doi.org/10.15252/embj.201695862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Durcova-Hills G, Surani A (2007) Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells. Curr Protoc Stem Cell Biol 1–20. https://doi.org/10.1002/9780470151808.sc01a03s5

  30. Mulas C, Kalkan T, von Meyenn F et al (2019) Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development 146:dev173146. https://doi.org/10.1242/dev.173146

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leitch HG, Blair K, Mansfield W et al (2010) Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 137:2279–2287. https://doi.org/10.1242/dev.050427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Resnick JL, Ortiz M, Keller JR, Donovan PJ (1998) Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol Reprod 59:1224–1229

    Article  CAS  Google Scholar 

  33. Blair K, Leitch HG, Mansfield W et al (2012) Culture parameters for stable expansion, genetic modification and germline transmission of rat pluripotent stem cells. Biol Open 1:58–65. https://doi.org/10.1242/bio.2011029

    Article  PubMed  CAS  Google Scholar 

  34. Wray J, Kalkan T, Smith AG (2010) The ground state of pluripotency. Biochem Soc Trans 38:1027. https://doi.org/10.1042/BST0381027

    Article  PubMed  CAS  Google Scholar 

  35. Stallock J, Molyneaux K, Schaible K et al (2003) The pro-apoptotic gene Bax is required for the death of ectopic primordial germ cells during their migration in the mouse embryo. Development 130:6589–6597. https://doi.org/10.1242/dev.00898

    Article  PubMed  CAS  Google Scholar 

  36. Leitch HG, Nichols J, Humphreys P et al (2013) Rebuilding pluripotency from primordial germ cells. Stem Cell Reports 1:66–78. https://doi.org/10.1016/j.stemcr.2013.03.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. de Felici M, McLaren A (1983) In vitro culture of mouse primordial germ cells. Exp Cell Res 144:417–427

    Article  Google Scholar 

  38. Nicholls PK, Schorle H, Naqvi S et al (2019) Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S A 246:201910733. https://doi.org/10.1073/pnas.1910733116

    Article  CAS  Google Scholar 

  39. Tada T, Tada M, Hilton K et al (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry G. Leitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borkowska, M., Leitch, H.G. (2021). Mouse Primordial Germ Cells: In Vitro Culture and Conversion to Pluripotent Stem Cell Lines. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics