Skip to main content

Epistasis Analysis: Classification Through Machine Learning Methods

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2212))

Abstract

Complex disease is different from Mendelian disorders. Its development usually involves the interaction of multiple genes or the interaction between genes and the environment (i.e. epistasis). Although the high-throughput sequencing technologies for complex diseases have produced a large amount of data, it is extremely difficult to analyze the data due to the high feature dimension and the combination in the epistasis analysis. In this work, we introduce machine learning methods to effectively reduce the gene dimensionality, retain the key epistatic effects, and effectively characterize the relationship between epistatic effects and complex diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore JH (2005) A global view of epistasis. Nat Genet 37(1):13–14

    Article  CAS  Google Scholar 

  2. Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance. Genetics 139(3):1455–1461

    Article  CAS  Google Scholar 

  3. Mackay TFC (2014) Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15(1):22

    Article  CAS  Google Scholar 

  4. Bateson W (1903) Mendel’s principles of heredity in mice. Nature 67(1744):512–512

    Google Scholar 

  5. Ellis RJ, Wang Z, Genes N et al (2019) Predicting opioid dependence from electronic health records with machine learning. BioData Min 12:3. https://doi.org/10.1186/s13040-019-0193-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu Q, Zou Y, Liu X (2019) A self-organizing memory neural network for aerosol concentration prediction. Comput Model Eng Sci 119(3):617–637

    Google Scholar 

  7. Neto HA, Tavares WL, Ribeiro DC et al (2019) On the utilization of deep and ensemble learning to detect milk adulteration. BioData Min 12:13. https://doi.org/10.1186/s13040-019-0200-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ritchie MD, Motsinger AA, Bush WS et al (2007) Genetic programming neural networks: a powerful bioinformatics tool for human genetics. Appl Soft Comput 7(1):471–479

    Article  Google Scholar 

  9. Kim D, Li R, Dudek SM et al (2014) Knowledge-driven genomic interactions: an application in ovarian cancer. BioData Min 7(1):20

    Article  Google Scholar 

  10. Motsinger-Reif AA, Dudek SM, Hahn LW et al (2008) Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genet Epidemiol 32(4):325–340

    Article  Google Scholar 

  11. Bureau A, Dupuis J, Hayward B et al (2003) Mapping complex traits using random forests. BMC Genet 4(Suppl 1):S64

    Article  Google Scholar 

  12. Listgarten J (2004) Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin Cancer Res 10(8):2725–2737

    Article  CAS  Google Scholar 

  13. Pedregosa F et al (2011) Scikit-learn: machine learning in Python. JMLR 12:2825–2830

    Google Scholar 

  14. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA et al (2012) GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min 5(1):16

    Article  Google Scholar 

  15. Wright MN, Ziegler A, König IR (2016) Do little interactions get lost in dark random forests? BMC Bioinformatics 17(1):145

    Article  Google Scholar 

  16. http://www.bdmb-web.cn/index.php?m=content&c=index&a=show&catid=38&id=90

  17. Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. Adv Neural Inf Process Syst 7(10):231–238

    Google Scholar 

  18. https://scikit-learn.org/stable/modules/cross_validation.html

  19. Hearst MA, Dumais ST, Osman E et al (1998) Support vector machines. IEEE Intell Syst 13(4):18–28

    Article  Google Scholar 

  20. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  21. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  22. Kakuba G, Mango JM, Anthonissen MJH (2019) Convergence properties of local defect correction algorithm for the boundary element method. Comput Model Eng Sci 119(1):207–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Chun Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, L., Wong, KC. (2021). Epistasis Analysis: Classification Through Machine Learning Methods. In: Wong, KC. (eds) Epistasis. Methods in Molecular Biology, vol 2212. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0947-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0946-0

  • Online ISBN: 978-1-0716-0947-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics