Skip to main content

Gene–Environment Interaction: A Variable Selection Perspective

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2212))

Abstract

Gene–environment interactions have important implications for elucidating the genetic basis of complex diseases beyond the joint function of multiple genetic factors and their interactions (or epistasis). In the past, G × E interactions have been mainly conducted within the framework of genetic association studies. The high dimensionality of G × E interactions, due to the complicated form of environmental effects and the presence of a large number of genetic factors including gene expressions and SNPs, has motivated the recent development of penalized variable selection methods for dissecting G × E interactions, which has been ignored in the majority of published reviews on genetic interaction studies. In this article, we first survey existing studies on both gene–environment and gene–gene interactions. Then, after a brief introduction to the variable selection methods, we review penalization and relevant variable selection methods in marginal and joint paradigms, respectively, under a variety of conceptual models. Discussions on strengths and limitations, as well as computational aspects of the variable selection methods tailored for G × E studies, have also been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter DJ (2005) Gene–environment interactions in human diseases. Nat Rev Genet 6(4):287

    Article  CAS  PubMed  Google Scholar 

  2. Simonds NI, Ghazarian AA, Pimentel CB, Schully SD, Ellison GL, Gillanders EM, Mechanic LE (2016) Review of the gene-environment interaction literature in cancer: what do we know? Genet Epidemiol 40(5):356–365

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flowers E, Froelicher ES, Aouizerat BE (2012) Gene-environment interactions in cardiovascular disease. Eur J Cardiovasc Nurs 11(4):472–478

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cornelis MC, Hu FB (2012) Gene-environment interactions in the development of type 2 diabetes: recent progress and continuing challenges. Annu Rev Nutr 32:245–259

    Article  CAS  PubMed  Google Scholar 

  5. Dempfle A, Scherag A, Hein R, Beckmann L, Chang-Claude J, Schäfer H (2008) Gene–environment interactions for complex traits: definitions, methodological requirements and challenges. Eur J Hum Genet 16(10):1164

    Article  CAS  PubMed  Google Scholar 

  6. Ottman R (1996) Gene–environment interaction: definitions and study design. Prev Med 25(6):764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4(2):45

    Article  CAS  PubMed  Google Scholar 

  8. Lunetta KL (2008) Genetic association studies. Circulation 118(1):96–101

    Article  PubMed  Google Scholar 

  9. Wu C, Li S, Cui Y (2012) Genetic association studies: an information content perspective. Curr Genomics 13(7):566–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cornelis MC, Tchetgen Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P (2011) Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol 175(3):191–202

    Article  PubMed  PubMed Central  Google Scholar 

  11. Murcray CE, Lewinger JP, Gauderman WJ (2008) Gene-environment interaction in genome-wide association studies. Am J Epidemiol 169(2):219–226

    Article  PubMed  PubMed Central  Google Scholar 

  12. Winham SJ, Biernacka JM (2013) Gene–environment interactions in genome-wide association studies: current approaches and new directions. J Child Psychol Psychiatry 54(10):1120–1134

    Article  PubMed  Google Scholar 

  13. Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sin 20(1):101

    PubMed  PubMed Central  Google Scholar 

  14. Wu C, Ma S (2014) A selective review of robust variable selection with applications in bioinformatics. Brief Bioinform 16(5):873–883

    Article  PubMed  PubMed Central  Google Scholar 

  15. Caspi A, Moffitt TE (2006) Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 7(7):583

    Article  CAS  PubMed  Google Scholar 

  16. Thomas D (2010) Gene–environment-wide association studies: emerging approaches. Nat Rev Genet 11(4):259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ober C, Vercelli D (2011) Gene–environment interactions in human disease: nuisance or opportunity? Trends Genet 27(3):107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fletcher JM, Conley D (2013) The challenge of causal inference in gene–environment interaction research: leveraging research designs from the social sciences. Am J Public Health 103(S1):S42–S45

    Article  PubMed  PubMed Central  Google Scholar 

  19. McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N, Jankowska MM (2017) Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol 186(7):753–761

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu M, Ma S (2018) Robust genetic interaction analysis. Brief Bioinform 20(2):624–637

    Article  PubMed Central  Google Scholar 

  21. Cordell HJ (2002) Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 11(20):2463–2468

    Article  CAS  PubMed  Google Scholar 

  22. Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56(1-3):73–82

    Article  PubMed  Google Scholar 

  23. Moore JH (2005) A global view of epistasis. Nat Genet 37(1):13

    Article  CAS  PubMed  Google Scholar 

  24. McKinney BA, Reif DM, Ritchie MD, Moore JH (2006) Machine learning for detecting gene-gene interactions. Appl Bioinforma 5(2):77–88

    Article  CAS  Google Scholar 

  25. Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9(11):855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10(6):392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85(3):309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Elston RC, Zhu X (2010) The meaning of interaction. Hum Hered 70(4):269–277

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li M, Lou XY, Lu Q (2012) On epistasis: a methodological review for detecting gene-gene interactions underlying various types of phenotypic traits. Recent Pat Biotechnol 6(3):230–236

    Article  CAS  PubMed  Google Scholar 

  30. Koo CL, Liew MJ, Mohamad MS, Salleh M, Hakim A (2013) A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology. Biomed Res Int 2013:432375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Van der Weele TJ, Knol MJ (2014) A tutorial on interaction. Epidemiol Methods 3(1):33–72

    Google Scholar 

  32. Wei WH, Hemani G, Haley CS (2014) Detecting epistasis in human complex traits. Nat Rev Genet 15(11):722–733

    Article  CAS  PubMed  Google Scholar 

  33. Niel C, Sinoquet C, Dina C, Rocheleau G (2015) A survey about methods dedicated to epistasis detection. Front Genet 6:285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol 58(1):267–288

    Google Scholar 

  35. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  Google Scholar 

  36. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

    Article  CAS  Google Scholar 

  37. Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38(2):894–942

    Article  Google Scholar 

  38. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 67(2):301–320

    Article  Google Scholar 

  39. Li C, Li H (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9):1175–1182

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Ma S, Li H, Zhang CH (2011) The sparse Laplacian shrinkage estimator for high-dimensional regression. Ann Stat 39(4):2021

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Series B Stat Methodol 68(1):49–67

    Article  Google Scholar 

  42. Huang J, Breheny P, Ma S (2012) A selective review of group selection in high-dimensional models. Stat Sci 27(4)

    Google Scholar 

  43. Breheny P, Huang J (2009) Penalized methods for bi-level variable selection. Stat Interface 2(3):369

    Article  PubMed  PubMed Central  Google Scholar 

  44. O'Hara RB, Sillanpää MJ (2009) A review of Bayesian variable selection methods: what, how and which. Bayesian Anal 4(1):85–117

    Article  Google Scholar 

  45. Park T, Casella G (2008) The bayesian lasso. J Am Stat Assoc 103(482):681–686

    Article  CAS  Google Scholar 

  46. Kyung M, Gill J, Ghosh M, Casella G (2010) Penalized regression, standard errors, and Bayesian lassos. Bayesian Anal 5(2):369–411

    Google Scholar 

  47. Ahn J, Mukherjee B, Gruber SB, Ghosh M (2013) Bayesian semiparametric analysis for two-phase studies of gene-environment interaction. Ann Appl Stat 7(1):543

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu C, Ma J, Amos CI (2015) Bayesian variable selection for hierarchical gene–environment and gene–gene interactions. Hum Genet 134(1):23–36

    Article  PubMed  Google Scholar 

  49. Li J, Wang Z, Li R, Wu R (2015) Bayesian group LASSO for nonparametric varying-coefficient models with application to functional genome-wide association studies. Ann Appl Stat 9(2):640

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ren J, Zhou F, Li X, Chen Q, Zhang H, Ma S, Jiang Y, Wu C (2020) Semi-parametric Bayesian variable selection for gene-environment interactions. Stat Med 39(5):617–638

    Article  PubMed  Google Scholar 

  51. George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889

    Article  Google Scholar 

  52. George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin:339–373

    Google Scholar 

  53. Ročková V, George EI (2018) The spike-and-slab lasso. J Am Stat Assoc 113(521):431–444

    Article  CAS  Google Scholar 

  54. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, vol 96, pp 148–156

    Google Scholar 

  55. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat:1189–1232

    Google Scholar 

  56. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining pp. 785–794. ACM

    Google Scholar 

  57. Bühlmann P, Yu B (2006) Sparse boosting. J Mach Learn Res 7:1001–1024

    Google Scholar 

  58. Buehlmann P (2006) Boosting for high-dimensional linear models. Ann Stat 34(2):559–583

    Google Scholar 

  59. Bühlmann P, Hothorn T (2007) Boosting algorithms: regularization, prediction and model fitting. Stat Sci 22(4):477–505

    Google Scholar 

  60. Pashova H, LeBlanc M, Kooperberg C (2013) Boosting for detection of gene–environment interactions. Stat Med 32(2):255–266

    Article  PubMed  Google Scholar 

  61. Wu M, Ma S (2019) Robust semiparametric gene-environment interaction analysis using sparse boosting. Stat Med 38(23):4625–4641

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hwang C, Shim J (2017) Feature selection in the semivarying coefficient LS-SVR. J Korean Data Infor Sci Soc 28(2):461–471

    Google Scholar 

  63. Shim J, Hwang C, Jeong S, Sohn I (2018) Semivarying coefficient least-squares support vector regression for analyzing high-dimensional gene-environmental data. J Appl Stat 45(8):1370–1381

    Article  Google Scholar 

  64. Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Series B Stat Methodol 70(5):849–911

    Article  Google Scholar 

  65. Song R, Lu W, Ma S, Jessie Jeng X (2014) Censored rank independence screening for high-dimensional survival data. Biometrika 101(4):799–814

    Article  PubMed  Google Scholar 

  66. Hao N, Zhang HH (2014) Interaction screening for ultrahigh-dimensional data. J Am Stat Assoc 109(507):1285–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  Google Scholar 

  68. Wu C, Zhou F, Ren J, Li X, Jiang Y, Ma S (2019) A selective review of multi-level omics data integration using variable selection. High Throughput 8(1):4

    Article  PubMed Central  Google Scholar 

  69. Lu M, Lee HS, Hadley D, Huang JZ, Qian X (2014) Logistic principal component analysis for rare variants in gene-environment interaction analysis. IEEE/ACM Trans Comput Biol Bioinform 11(6):1020–1028

    Article  PubMed  Google Scholar 

  70. Ko YA, Mukherjee B, Smith JA, Kardia SL, Allison M, Roux AVD (2016) Classification and clustering methods for multiple environmental factors in gene-environment interaction–application to the multi-ethnic study of atherosclerosis. Epidemiology 27(6):870

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang Y, Xu M, Wang Z, Tao M, Zhu J, Wang L, Wu R (2011) How to cluster gene expression dynamics in response to environmental signals. Brief Bioinform 13(2):162–174

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang T, Ho G, Ye K, Strickler H, Elston RC (2009) A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped. Genet Epidemiol 33(1):6–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma S, Yang L, Romero R, Cui Y (2011) Varying coefficient model for gene–environment interaction: a non-linear look. Bioinformatics 27(15):2119–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu C, Cui Y (2013) A novel method for identifying nonlinear gene–environment interactions in case–control association studies. Hum Genet 132(12):1413–1425

    Article  PubMed  Google Scholar 

  75. Cornelis MC, Agrawal A, Cole JW, Hansel NN, Barnes KC, Beaty TH et al (2010) The gene, environment association studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genet Epidemiol 34(4):364–372

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu X, Zhong P-S, Cui YH (2020) Joint test of parametric and nonparametric effects in partial linear models for gene-environment interaction. Stat Sin 30:325–346

    Google Scholar 

  77. Shi X, Liu J, Huang J, Zhou Y, Xie Y, Ma S (2014) A penalized robust method for identifying gene–environment interactions. Genet Epidemiol 38(3):220–230

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, Raso G, Girard L, Erickson H, Roth J, Heymach J, Moran C, Danenberg K, Minna J, Wistuba I (2011) Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non–small-cell lung cancer patients. Clin Cancer Res 17(17):5705–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chai H, Zhang Q, Jiang Y, Wang G, Zhang S, Ahmed SE, Ma S (2017) Identifying gene-environment interactions for prognosis using a robust approach. Econom Stat 4:105–120

    PubMed  Google Scholar 

  80. Bien J, Taylor J, Tibshirani R (2013) A lasso for hierarchical interactions. Ann Stat 41(3):1111

    Article  PubMed  PubMed Central  Google Scholar 

  81. Choi NH, Li W, Zhu J (2010) Variable selection with the strong heredity constraint and its oracle property. J Am Stat Assoc 105(489):354–364

    Article  CAS  Google Scholar 

  82. Zhang S, Xue Y, Zhang Q, Ma C, Wu M, Ma S (2020) Identification of gene–environment interactions with marginal penalization. Genet Epidemiol 44(2):159–196

    Article  PubMed  Google Scholar 

  83. Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22(2):231–245

    Article  Google Scholar 

  84. Liu J, Huang J, Zhang Y, Lan Q, Rothman N, Zheng T, Ma S (2013) Identification of gene–environment interactions in cancer studies using penalization. Genomics 102(4):189–194

    Article  CAS  PubMed  Google Scholar 

  85. Wu C, Jiang Y, Ren J, Cui Y, Ma S (2018) Dissecting gene-environment interactions: a penalized robust approach accounting for hierarchical structures. Stat Med 37(3):437–456

    Article  PubMed  Google Scholar 

  86. Xu Y, Wu M, Zhang Q, Ma S (2019) Robust identification of gene-environment interactions for prognosis using a quantile partial correlation approach. Genomics 111(5):1115–1123

    Article  CAS  PubMed  Google Scholar 

  87. Ma S, Xu S (2015) Semiparametric nonlinear regression for detecting gene and environment interactions. J Stat Plan Inference 156:31–47

    Article  Google Scholar 

  88. Liu X, Cui Y, Li R (2016) Partial linear varying multi-index coefficient model for integrative gene-environment interactions. Stat Sin 26:1037

    PubMed  PubMed Central  Google Scholar 

  89. Lin X, Lee S, Christiani DC, Lin X (2013) Test for interactions between a genetic marker set and environment in generalized linear models. Biostatistics 14(4):667–681

    Article  PubMed  PubMed Central  Google Scholar 

  90. He Z, Zhang M, Lee S, Smith JA, Kardia SL, Roux VD, Mukherjee B (2017) Set-based tests for the gene–environment interaction in longitudinal studies. J Am Stat Assoc 112(519):966–978

    Article  CAS  PubMed  Google Scholar 

  91. Antonelli J, Mazumdar M, Bellinger D, Christiani DC, Wright R, Coull BA (2017). Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors. arXiv:1711.11239

    Google Scholar 

  92. Bai R, Moran GE, Antonelli J, Chen Y, Boland MR (2019) Spike-and-slab group lassos for grouped regression and sparse generalized additive models. arXiv:1903.01979

    Google Scholar 

  93. Ma S, Song PXK (2015) Varying index coefficient models. J Am Stat Assoc 110(509):341–356

    Article  CAS  Google Scholar 

  94. Zhang Y, Holford TR, Leaderer B, Boyle P, Zahm SH, Flynn S, Tallini G, Owens P, Zheng T (2004) Hair-coloring product use and risk of non-Hodgkin’s lymphoma: a population-based case-control study in Connecticut. Am J Epidemiol 159(2):148–154

    Article  PubMed  Google Scholar 

  95. Zhang Y, Lan Q, Rothman N, Zhu Y, Zahm S, Wang S, Holford T, Leaderer B, Boyle P, Zhang B, Zou K, Chanock S, Zheng T (2005) A putative exonic splicing polymorphism in the BCL6 gene and the risk of non-Hodgkin lymphoma. J Natl Cancer Inst 97(21):1616–1618

    Article  CAS  PubMed  Google Scholar 

  96. Wu M, Zhang Q, Ma S (2020) Structured gene-environment interaction analysis. Biometrics 76(1):23–35

    Google Scholar 

  97. Wang X, Xu Y, Ma S (2019). Identifying gene-environment interactions incorporating prior information. Stat Med 38(9):1620–1633

    Google Scholar 

  98. Zhou F, Ren J, Li G, Jiang Y, Li X, Wang W, Wu C (2019). Penalized variable selection for lipid–environment interactions in a longitudinal lipidomics study. Genes 10:1002

    Google Scholar 

  99. Zhou F, Ren J, Li X, Wu C, Jiang Y (2019) Package ‘interep’: interaction analysis of repeated measure data. R package version 0.3.0

    Google Scholar 

  100. Zhou F, Lu X, Ren J, Fan K, Ma S, Wu C (2020). Sparse group variable selection for Gene-environment interactions in the longitudinal study. (under review)

    Google Scholar 

  101. Ren J, Zhou F, Li X, Ma S, Jiang Y, Wu C (2020). Robust Bayesian variable selection for gene-environment interactions. arXiv preprint arXiv:2006.05455

    Google Scholar 

  102. Wu M, Zang Y, Zhang S, Huang J, Ma S (2017). Accommodating missingness in environmental measurements in gene-environment interaction analysis. Genet Epidemiol 41(6):523–554

    Google Scholar 

  103. Du Y, Ren J, Zhou F, Jiang Y, Ma S, Wu C (2020). Integrating multi-omics data for gene-environment interactions. (To be submitted)

    Google Scholar 

  104. Xu Y, Wu M, Ma S, Ejaz Ahmed S (2018) Robust gene–environment interaction analysis using penalized trimmed regression. J Stat Comput Simul 88(18):3502–3528

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xu Y, Zhong T, Wu M, Ma S (2019) Histopathological imaging–environment interactions in cancer modeling. Cancers 11(4):579

    Article  PubMed Central  Google Scholar 

  106. Wu C, Cui Y (2013) Boosting signals in gene-based association studies via efficient SNP selection. Brief Bioinform 15(2):279–291

    Article  PubMed  Google Scholar 

  107. Jin L, Zuo X, Su W, Zhao X, Yuan M, Han L, Zhao X, Chen Y, Rao S (2014) Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics 12(5):210–220

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jiang Y, Huang Y, Du Y, Zhao Y, Ren J, Ma S, Wu C (2017) Identification of prognostic genes and pathways in lung adenocarcinoma using a Bayesian approach. Cancer Informat 1(7)

    Google Scholar 

  109. Wu C, Zhong PS, Cui Y (2013) High dimensional variable selection for gene-environment interactions. Technical Report. Michigan State University, Michigan

    Google Scholar 

  110. Wu C, Zhong PS, Cui Y (2018) Additive varying-coefficient model for nonlinear gene-environment interactions. Stat Appl Genet Mol Biol 17(2)

    Google Scholar 

  111. Wang L, Li H, Huang JZ (2008) Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Am Stat Assoc 103(484):1556–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu C, Cui Y, Ma S (2014) Integrative analysis of gene–environment interactions under a multi-response partially linear varying coefficient model. Stat Med 33(28):4988–4998

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wu C, Shi X, Cui Y, Ma S (2015) A penalized robust semiparametric approach for gene–environment interactions. Stat Med 34(30):4016–4030

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ren J, Zhou F, Li X, Wu C, Jiang Y (2019) Package ‘spinBayes’: semi-parametric gene-environment interaction via Bayesian variable selection. R package version 0.1.0. 2019

    Google Scholar 

  115. Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc Series B Stat Methodol 55(4):757–779

    Google Scholar 

  116. Fan J, Zhang W (2008) Statistical methods with varying coefficient models. Stat Interface 1(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kaslow RA, Phair JP, Friedman HB, Lyter D, Solomon RE, Dudley J, Polk BF, Blackwelder W (1987) Infection with the human immunodeficiency virus: clinical manifestations and their relationship to immune deficiency: a report from the multicenter AIDS cohort study. Ann Intern Med 107(4):474–480

    Article  CAS  PubMed  Google Scholar 

  118. Morris JS (2015) Functional regression. Annu Rev Stat Appl 2:321–359

    Article  Google Scholar 

  119. Fu WJ (1998) Penalized regressions: the bridge versus the lasso. J Comput Graph Stat 7(3):397–416

    Google Scholar 

  120. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theory Appl 109(3):475–494

    Article  Google Scholar 

  122. Wu C, Zhang Q, Jiang Y, Ma S (2018) Robust network-based analysis of the associations between (epi) genetic measurements. J Multivar Anal 168:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ren J, Du Y, Li S, Ma S, Jiang Y, Wu C (2019) Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis. Genet Epidemiol 43(3):276–291

    Article  PubMed  PubMed Central  Google Scholar 

  124. Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning Now Publishers Inc Norwell, MA, 3(1), 1-122

    Google Scholar 

  125. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  Google Scholar 

  126. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  Google Scholar 

  127. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J R Stat Soc Series B Stat Methodol 67(1):91–108

    Article  Google Scholar 

  128. Sun H, Wang S (2013) Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data. Stat Med 32(12):2127–2139

    Article  PubMed  Google Scholar 

  129. Ren J, He T, Li Y, Liu S, Du Y, Jiang Y, Wu C (2017) Network-based regularization for high dimensional SNP data in the case–control study of type 2 diabetes. BMC Genet 18(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kim K, Sun H (2019) Incorporating genetic networks into case-control association studies with high-dimensional DNA methylation data. BMC Bioinformatics 20(1):510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gjuvsland AB, Hayes BJ, Omholt SW, Carlborg Ö (2007) Statistical epistasis is a generic feature of gene regulatory networks. Genetics 175(1):411–420

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hu T, Sinnott-Armstrong NA, Kiralis JW, Andrew AS, Karagas MR, Moore JH (2011) Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics 12(1):364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hu T, Andrew AS, Karagas MR, Moore JH (2013) Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models. Pac Symp Biocomput 2013:397–408

    Google Scholar 

  134. King B, Lu L, Yu M, Jiang Y, Standard J, Su X, Zhao Z, Wang W (2015) Lipidomic profiling of di-and tri-acylglycerol species in weight-controlled mice. PLoS One 10(2):e0116398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the editor and reviewers for their invitation, careful review, and insightful comments, leading to a significant improvement of this article. This study has been partly supported by the National Institutes of Health (CA191383, CA204120), the VA Cooperative Studies Program of the Department of VA, Office of Research and Development, an innovative research award from KSU Johnson Cancer Research Center, and a KSU Faculty Enhancement Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, F., Ren, J., Lu, X., Ma, S., Wu, C. (2021). Gene–Environment Interaction: A Variable Selection Perspective. In: Wong, KC. (eds) Epistasis. Methods in Molecular Biology, vol 2212. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0947-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0946-0

  • Online ISBN: 978-1-0716-0947-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics