Skip to main content

Using Magnetic Tweezers to Unravel the Mechanism of the G-quadruplex Binding and Unwinding Activities of DHX36 Helicase

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2209))

Abstract

Single-molecule manipulation methods are useful techniques to probe the interactions of proteins and nucleic acid structures. Here, we describe the magnetic tweezers-based single-molecule investigation of the binding of helicases to G-quadruplex structures and their ATP-dependent unwinding activity, using DHX36 (also known as RHAU and G4R1) helicase and a DNA G-quadruplex structure for an example. We specifically emphasize on the principle and method to probe the interactions between DHX36 and the DNA G-quadruplex in different intermediate states during an ATPase cycle of DHX36, based on detecting the DHX36-induced changes in the lifetime of the DNA G-quadruplex under tension. The principle of the measurement can be broadly extended to the studies of other DNA or RNA G-quadruplex helicases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43:8627–8637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwok CK, Marsico G, Sahakyan AB et al (2016) rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat Methods 13:841–844

    Article  CAS  PubMed  Google Scholar 

  3. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284

    Article  CAS  PubMed  Google Scholar 

  4. Guo JU, Bartel DP (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353:aaf5371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Vaughn JP, Creacy SD, Routh ED et al (2005) The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J Biol Chem 280:38117–38120

    Article  CAS  PubMed  Google Scholar 

  6. Mendoza O, Bourdoncle A, Boulé J-B et al (2016) G-quadruplexes and helicases. Nucleic Acids Res 44:1989–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paeschke K, Bochman ML, Garcia PD et al (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    Article  PubMed  Google Scholar 

  9. Abdelhaleem M (2005) RNA helicases: regulators of differentiation. Clin Biochem 38:499–503

    Article  CAS  PubMed  Google Scholar 

  10. Cordin O, Banroques J, Tanner NK et al (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  11. Chen MC, Tippana R, Demeshkina NA et al (2018) Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen WF, Rety S, Guo HL et al (2018) Molecular mechanistic insights into drosophila DHX36-mediated G-quadruplex unfolding: a structure-based model. Structure 26(403–415):e404

    Google Scholar 

  13. Creacy SD, Routh ED, Iwamoto F et al (2008) G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J Biol Chem 283:34626–34634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giri B, Smaldino PJ, Thys RG et al (2011) G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA. Nucleic Acids Res 39:7161–7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tippana R, Chen MC, Demeshkina NA et al (2019) RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat Commun 10:1855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. You H, Lattmann S, Rhodes D et al (2017) RHAU helicase stabilizes G4 in its nucleotide-free state and destabilizes G4 upon ATP hydrolysis. Nucleic Acids Res 45:206–214

    Article  CAS  PubMed  Google Scholar 

  17. Yu Z, Schonhoft JD, Dhakal S et al (2009) ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. J Am Chem Soc 131:1876–1882

    Article  CAS  PubMed  Google Scholar 

  18. Koirala D, Dhakal S, Ashbridge B et al (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3:782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Messieres M, Chang JC, Brawn-Cinani B et al (2012) Single-molecule study of G-quadruplex disruption using dynamic force spectroscopy. Phys Rev Lett 109:058101

    Article  PubMed  CAS  Google Scholar 

  20. Li W, Hou XM, Wang PY et al (2013) Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures. J Am Chem Soc 135:6423–6426

    Article  CAS  PubMed  Google Scholar 

  21. You H, Wu J, Shao F et al (2015) Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation. J Am Chem Soc 137:2424–2427

    Article  CAS  PubMed  Google Scholar 

  22. Mitra J, Makurath MA, Ngo TT et al (2019) Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci 116:8350–8359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitra J, Ha T (2019) Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res 47:11044–11056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mandal S, Hoque ME, Mao H (2019) Single-molecule investigations of G-quadruplex. Methods Mol Biol 2035:275–298

    Article  CAS  PubMed  Google Scholar 

  25. Zhao X, Zeng X, Lu C et al (2017) Studying the mechanical responses of proteins using magnetic tweezers. Nanotechnology 28:414002

    Article  PubMed  CAS  Google Scholar 

  26. Cheng Y, Tang Q, Li Y et al (2019) Folding/unfolding kinetics of G-quadruplexes upstream of the P1 promoter of the human BCL-2 oncogene. J Biol Chem 294:5890–5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koch SJ, Wang MD (2003) Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. Phys Rev Lett 91:028103

    Article  PubMed  CAS  Google Scholar 

  28. Dittmore A, Landy J, Molzon AA et al (2014) Single-molecule methods for ligand counting: linking ion uptake to DNA hairpin folding. J Am Chem Soc 136:5974–5980

    Article  CAS  PubMed  Google Scholar 

  29. Mandal S, Koirala D, Selvam S et al (2015) A molecular tuning fork in single-molecule mechanochemical sensing. Angew Chem 127:7717–7721

    Article  Google Scholar 

  30. Camunas-Soler J, Alemany A, Ritort F (2017) Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems. Science 355:412–415

    Article  CAS  PubMed  Google Scholar 

  31. Zhao X, Peter S, Dröge P et al (2017) Oncofetal HMGA2 effectively curbs unconstrained (+) and (−) DNA supercoiling. Sci Rep 7:8440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gulvady R, Gao Y, Kenney LJ et al (2018) A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity. Nucleic Acids Res 46:10216–10224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Guo S, Lu C et al (2019) Single-molecule manipulation quantification of site-specific DNA binding. Curr Opin Chem Biol 53:106–117

    Article  CAS  PubMed  Google Scholar 

  34. Long X, Parks JW, Bagshaw CR et al (2013) Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res 41:2746–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. You H, Zeng X, Xu Y et al (2014) Dynamics and stability of polymorphic human telomeric G-quadruplex under tension. Nucleic Acids Res 42:8789–8795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tran H, Schilling M, Wirbelauer C et al (2004) Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 13:101–111

    Article  CAS  PubMed  Google Scholar 

  37. Chalupníková K, Lattmann S, Selak N et al (2008) Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J Biol Chem 283:35186–35198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Strick TR, Allemand J-F, Bensimon D et al (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837

    Article  CAS  PubMed  Google Scholar 

  39. Vilfan I, Lipfert J, Koster D et al. (2009) Magnetic tweezers for single-molecule experiments. In: Handbook of single-molecule biophysics. Springer, pp 371–395

    Google Scholar 

  40. Chen H, Fu H, Zhu X et al (2011) Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophys J 100:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    Article  CAS  Google Scholar 

  43. Bosco A, Camunas-Soler J, Ritort F (2013) Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Res 42:2064–2074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Guo S, Tang Q, Yao M et al (2018) Structural–elastic determination of the force-dependent transition rate of biomolecules. Chem Sci 9:5871–5882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen H, Yuan G, Winardhi RS et al (2015) Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J Am Chem Soc 137:3540–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Yan J, Goult BT (2019) Force-dependent binding constants. Biochemistry 58:4696–4709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education Academic Research Fund Tier 1 (to J. Y.); The National Research Foundation, Prime Minister’s Office, Singapore and the Ministry of Education under the Research Centres of Excellence programme (to J. Y.); The National Natural Science Foundation of China (21708009 to H.Y.), and the Fundamental Research Fund for the Central Universities (2017KFYXJJ153 to H.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

You, H., Zhou, Y., Yan, J. (2021). Using Magnetic Tweezers to Unravel the Mechanism of the G-quadruplex Binding and Unwinding Activities of DHX36 Helicase. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 2209. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0935-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0935-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0934-7

  • Online ISBN: 978-1-0716-0935-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics