Skip to main content

Ultramicrotomy Analysis of Peptide-Treated Cells

  • Protocol
  • First Online:
Polypeptide Materials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2208))

Abstract

Electron microscopy offers necessary precision for the characterization of peptide materials at the nanoscale. Analysis is typically performed for acellular material specimens, whereas measurements in more complex, cellular environments prompt additional considerations for sample processing. Herein, we describe a protocol for the ultramicrotomy analysis of peptide-treated bacterial and mammalian cells. An emphasis is made on cell analysis following peptide treatment, as opposed to peptide analysis in cells, and focuses on sample processing, including fixation and staining procedures, resin embedding, sectioning, and imaging. The application of the protocol is demonstrated for intracellular measurements using antimicrobial peptide materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raymond DM, Nilsson BL (2018) Multicomponent peptide assemblies. Chem Soc Rev 47:3659–3720

    Article  CAS  Google Scholar 

  2. De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300

    Article  Google Scholar 

  3. Mammadov R, Tekinay AB, Dana A, Guler MO (2012) Microscopy characterization of peptide nanostructures. Micron 43:69–84

    Article  CAS  Google Scholar 

  4. Lou S, Wang X, Yu Z, Shi L (2019) Peptide tectonics: encoded structural complementarity dictates programmable self-assembly. Adv Sci 6:1802043

    Article  Google Scholar 

  5. Faruqui N, Kummrow A, Fu B et al (2020) Cellular metrology: scoping for a value proposition in extra- and intracellular measurements. Front Bioeng Biotechnol 7:456

    Article  Google Scholar 

  6. Inaba H, Matsuura K (2019) Peptide nanomaterials designed from natural supramolecular systems. Chem Rec 19:843–858

    Article  CAS  Google Scholar 

  7. Zajiczek L, Shaw M, Faruqui N, Bella A, Pawar VM, Srinivasan MA, Ryadnov MG (2016) Nano-mechanical single-cell sensing of cell-matrix contacts. Nanoscale 8:18105–18112

    Article  CAS  Google Scholar 

  8. Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides Gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54:3132–3142

    Article  CAS  Google Scholar 

  9. Ellerby HM, Arap W, Ellerby LM et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  Google Scholar 

  10. Bozzola JJ, Russel LD (1999) Electron microscopy principles and techniques for biologists, 2nd edn. Jones & Bartlett Learning, Burlington, Massachusetts

    Google Scholar 

  11. Kuo J (2007) Methods in Molecular Biology. In: Electron Microscopy: Methods and Protocols, vol volume 369, 2nd edn. Humana Press, Totowa, New Jersey

    Chapter  Google Scholar 

  12. Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55:5445–5451

    Article  CAS  Google Scholar 

  13. Kumar S, Ciraolo G, Hinge A, Filippi MD (2014) An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations. J Immunol Methods 404:87–90

    Article  CAS  Google Scholar 

  14. Griffins G (1993) Fine structure immunocytochemistry. In: Chapter 3: fixation for fine structure preservation and immunocytochemistry. Springer-Verlag, London, pp P26–P46

    Chapter  Google Scholar 

  15. McDonald K (1984) Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J Ultrastruct Res 86:107–118

    Article  CAS  Google Scholar 

  16. Maupim-Szamier P, Pollard MD (1978) Actin filament destruction by osmium tetroxide. J Cell Biol 77:837–852

    Article  Google Scholar 

  17. Madani F, Lindberg S, Langel U, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    Article  Google Scholar 

  18. Foroozandeh P, Aziz AA (2018) Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett 25:339

    Article  Google Scholar 

  19. Fernández-Carneado J, Kogan MJ, Van Mau N, Pujals S, López-Iglesias C, Heitz F, Giralt E (2005) Fatty acyl moieties: improving pro-rich peptide uptake inside HeLa cells. J Pept Res 65:580–590

    Article  Google Scholar 

  20. Wollack JW, Zeliadt NA, Mullen DG, Amundson G, Geier S, Falkum S, Wattenberg EV, Barany G, Distefano MD (2009) Multifunctional prenylated peptides for live cell analysis. J Am Chem Soc 131:7293–7303

    Article  CAS  Google Scholar 

  21. Castelletto V, De Santis E, Alkassem H, Lamarre B, Noble JE, Ray S, Bella A, Burns JR, Hoogenboom BW, Ryadnov MG (2015) Structurally plastic peptide capsules for synthetic antimicrobial viruses. Chem Sci 7:1707–1711

    Article  Google Scholar 

  22. De Santis E, Alkassem H, Lamarre B, Faruqui N, Bella A, Noble JE, Micale N, Ray S, Burns JR, Yon AR, Hoogenboom BW, Ryadnov MG (2017) Antimicrobial peptide capsids of de novo design. Nat Commun 22:2263

    Article  Google Scholar 

  23. Hammond K, Lewis H, Faruqui N, Russell C, Hoogenboom BW, Ryadnov MG (2019) Helminth defense molecules as design templates for membrane active antibiotics. ACS Infect Dis 5:1471–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by UK’s Industry Strategy Challenge Fund. We thank the Electron microscopy imaging centre of the University of Sussex, funded by the School of Life Sciences, the Wellcome Trust (095605/Z/11/A, 208348/Z/17/Z) and the RM Phillips Trust for their support & assistance in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim G. Ryadnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rey, S., Faruqui, N., Ryadnov, M.G. (2021). Ultramicrotomy Analysis of Peptide-Treated Cells. In: Ryadnov, M. (eds) Polypeptide Materials. Methods in Molecular Biology, vol 2208. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0928-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0928-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0927-9

  • Online ISBN: 978-1-0716-0928-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics