Skip to main content

Assessment of Binge-Like Eating Behavior in Mice Utilizing a Weekly Intermittent Access Paradigm

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Abstract

In humans, binge eating (BE) is central to the harmful effects of bulimia and binge eating disorder (BED). An estimated 30% of the obese population in the United States meets the diagnostic criteria for BED. Thus, BED is likely a major contributor to the current obesity epidemic. We developed a novel model to examine binge-like eating behavior in rodents that utilizes a schedule of 24-h weekly access to a highly palatable, nutritionally complete energy-dense diet (HED). This method for inducing BE has advantages over previous methods in that it does not require the use of exogenous stressors, caloric restriction, or entrained food anticipatory activity to induce the binge episode. Herein, we report that the BE response induced by this intermittent feeding paradigm can be maintained for at least 9 months in C57BL/6 mice. However, answers to a fundamental question remain. Can BE increase the risk of metabolic syndrome above and beyond the risk associated with obesity alone? Recent evidence in humans and rodents suggests that this may be the case. Given the high prevalence of BED in obesity, it is to be expected that there will be metabolic consequences of BE in this model and potentially in other BE models. However, the exact nature and if it is similar to that observed in frank obesity remains to be determined. We report on what is known about the metabolic consequences of long-term exposure to BE in mice with 24-h weekly access to an HED. While the changes we observed are subtle, over time they could have a significant impact on overall metabolism. Alterations in opioid receptor signaling pathways after repeated bingeing are discussed and may be one mechanism that links binge-like eating behavior with peripheral metabolism. Mice have particular advantages as a preclinical model mainly due to the sophisticated genetic techniques that are available in this species. Extensive characterization of the physiological, behavioral, and molecular changes associated with intermittent access to palatable diets will provide opportunities to identify and test novel therapeutic approaches to reduce BE and to understand its clinical translatability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Call C, Walsh BT, Attia E (2013) From DSM-IV to DSM-5: changes to eating disorder diagnoses. Curr Opin Psychiatry 26(6):532–536

    Article  PubMed  Google Scholar 

  2. Walsh BT (2019) Diagnostic categories for eating disorders: current status and what lies ahead. Psychiatr Clin North Am 42:1): 1–1):10

    Article  PubMed  Google Scholar 

  3. Hudson JI et al (2007) The prevalence and correlates of eating disorders in the National Comorbidity Survey replication. Biol Psychiatry 61(3):348–358

    Article  PubMed  Google Scholar 

  4. Wonderlich SA et al (2009) The validity and clinical utility of binge eating disorder. Int J Eat Disord 42(8):687–705

    Article  PubMed  Google Scholar 

  5. Guerdjikova AI et al (2019) Update on binge eating disorder. Med Clin North Am 103(4):669–680

    Article  PubMed  Google Scholar 

  6. Novelle MG, Diéguez C (2019) Updating gender differences in the control of homeostatic and hedonic food intake: implications for binge eating disorder. Mol Cell Endocrinol 497:110508

    Article  CAS  PubMed  Google Scholar 

  7. Samson SL, Garber AJ (2014) Metabolic syndrome. Endocrinol Metab Clin N Am 43(1):1–23

    Article  Google Scholar 

  8. Çelik S et al (2015) Correlation of binge eating disorder with level of depression and glycemic control in type 2 diabetes mellitus patients. Gen Hosp Psychiatry 37(2):116–119

    Article  PubMed  Google Scholar 

  9. Klatzkin RR et al (2015) Binge eating disorder and obesity: preliminary evidence for distinct cardiovascular and psychological phenotypes. Physiol Behav 142:20–27

    Article  CAS  PubMed  Google Scholar 

  10. Herbozo S et al (2015) Dietary adherence, glycemic control, and psychological factors associated with binge eating among indigenous and non-indigenous Chileans with type 2 diabetes. Int J Behav Med 22(6):792–798

    Article  PubMed  Google Scholar 

  11. Raevuori A et al (2015) Highly increased risk of type 2 diabetes in patients with binge eating disorder and bulimia nervosa. Int J Eat Disord 8(6):555–562

    Article  Google Scholar 

  12. Papelbaum M et al (2019) Does binge-eating matter for glycemic control in type 2 diabetes patients? J Eat Disord 7(1):30–36

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang J et al (2001) Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50(12):2786–2791

    Article  CAS  PubMed  Google Scholar 

  14. Ilyas A et al (2018) The metabolic underpinning of eating disorders: a systematic review and meta-analysis of insulin sensitivity. Mol Cell Endocrinol 497:110307

    Article  PubMed  CAS  Google Scholar 

  15. Wassenaar E, Friedman J, Mehler PS (2019) Medical complications of binge eating disorder. Psychiatr Clin North Am 42(2):275–286

    Article  PubMed  Google Scholar 

  16. Corwin RL, Avena NM, Boggiano MM (2011) Feeding and reward: perspectives from three rat models of binge eating. Physiol Behav 104(1):87–97

    Article  CAS  PubMed  Google Scholar 

  17. Rada P, Avena NM, Hoebel BG (2005) Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134(3):737–744

    Article  CAS  PubMed  Google Scholar 

  18. Corwin RL, Wojnicki FH (2006) Binge eating in rats with limited access to vegetable shortening. Curr Protoc Neurosci. Chapter 9: Unit 9.23B

    Google Scholar 

  19. Wojnicki FHE, Stine JG, Corwin RLW (2007) Liquid sucrose bingeing in rats depends on the access schedule, concentration and delivery system. Physiol Behav 92(4):566–574

    Article  CAS  PubMed  Google Scholar 

  20. Sahr AE et al (2008) Activation of mesolimbic dopamine neurons during novel and daily limited access to palatable food is blocked by the opioid antagonist LY255582. Am J Physiol Regul Integr Comp Physiol 295(2):463–471

    Article  CAS  Google Scholar 

  21. Sindelar DK et al (2005) Attenuated feeding responses to circadian and palatability cues in mice lacking neuropeptide Y. Peptides 26(12):2597–2602

    Article  CAS  PubMed  Google Scholar 

  22. Bake T, Morgan DGA, Mercer JG (2014) Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague–Dawley rat. Physiol Behav 128(100):70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teegarden SL, Bale TL (2007) Effects of stress on dietary preference and intake are dependent on access and stress sensitivity. Physiol Behav 93(4):713–723

    PubMed  PubMed Central  Google Scholar 

  24. Czyzyk TA, Sahr AE, Statnick MA (2010) A model of binge-like eating behavior in mice that does not require food deprivation or stress. Obesity (Silver Spring) 18(9):1710–1717

    Article  Google Scholar 

  25. Cao X et al (2014) Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. J Clin Invest 124(10):4351–4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schroeder M et al (2017) A methyl-balanced diet prevents CRF-induced prenatal stress-triggered predisposition to binge eating-like phenotype. Cell Metab 25(6):1269–1281.e6

    Article  CAS  PubMed  Google Scholar 

  27. Xu P et al (2016) Activation of serotonin 2C receptors in dopamine neurons inhibits binge-like eating in mice. Biol Psychiatry 81(9):737–747

    Article  PubMed  CAS  Google Scholar 

  28. Xu Y et al (2017) VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation. eNeuro 4(3):ENEURO.0083-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, van den Pol AN (2017) Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 356(6340):853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Capasso A, Petrella C, Milano W (2009) Pharmacological profile of SSRIs and SNRIs in the treatment of eating disorders. Curr Clin Pharmacol 4(1):78

    Article  CAS  PubMed  Google Scholar 

  31. Epstein LH et al (2011) Long-term habituation to food in obese and nonobese women. Am J Clin Nutr 94(2):371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jumpertz R et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krajmalnik-Brown R et al (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27(2):201–214

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muegge BD et al (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332(6032):970–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  36. Laughlin MR et al (2012) NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping. Mamm Genome 23(9):623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mann A et al (2014) Localization, identification, and excision of murine adipose depots. J Vis Exp 94:52174

    Google Scholar 

  38. Ayala JE et al (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mantzoros C et al (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382(6588):250–252

    Article  PubMed  Google Scholar 

  40. Bézaire V et al (2001) Effects of fasting on muscle mitochondrial energetics and fatty acid metabolism in Ucp3(−/−) and wild-type mice. Am J Physiol Endocrinol Metab 281(5):975–982

    Article  Google Scholar 

  41. Heijboer AC et al (2005) Sixteen hours of fasting differentially affects hepatic and muscle insulin sensitivity in mice. J Lipid Res 46(3):582–588

    Article  CAS  PubMed  Google Scholar 

  42. Silva JP et al (2009) Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature 462(7273):646–650

    Article  CAS  PubMed  Google Scholar 

  43. Consoli D et al (2009) Binge-like eating in mice. Int J Eat Disord 42(5):402–408

    Article  PubMed  Google Scholar 

  44. Pankevich DE et al (2010) Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J Neurosci 30(48):16399–16407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Telensky P et al (2015) The interaction of binge-eating and stress-responsivity in mice. 45th Annual Society for Neuroscience Meeting, Program #524.03

    Google Scholar 

  46. Schroeder M et al (2018) Sex dependent impact of gestational stress on predisposition to eating disorders and metabolic disease. Mol Metab 17:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carlin JL et al (2016) Removal of high-fat diet after chronic exposure drives binge behavior and dopaminergic dysregulation in female mice. Neuroscience 326:170–179

    Article  CAS  PubMed  Google Scholar 

  48. Leibowitz SF et al (2005) Phenotypic profile of SWR/J and A/J mice compared to control strains: possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Res 1047(2):137–147

    Article  CAS  PubMed  Google Scholar 

  49. Alexander J et al (2006) Distinct phenotypes of obesity-prone AKR J, DBA2J and C57BL 6J mice compared to control strains. Int J Obes 30(1):50–59

    Article  CAS  Google Scholar 

  50. Lewis SR et al (2005) Inbred mouse strain survey of sucrose intake. Physiol Behav 85(5):546–556

    Article  CAS  PubMed  Google Scholar 

  51. Lewis SR et al (2006) Genetic variance contributes to ingestive processes: a survey of eleven inbred mouse strains for fat (Intralipid) intake. Physiol Behav 90(1):82–94

    Article  PubMed  CAS  Google Scholar 

  52. Smith BK, Andrews PK, West DB (2000) Macronutrient diet selection in thirteen mouse strains. Am J Physiol Regul Integr Comp Physiol 278(4):797–805

    Article  Google Scholar 

  53. Freeman HC et al (2006) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55(7):2153–2156

    Article  CAS  PubMed  Google Scholar 

  54. King SJ et al (2016) Investigation of a role for ghrelin signaling in binge-like feeding in mice under limited access to high-fat diet. Neuroscience 319:233–245

    Article  CAS  PubMed  Google Scholar 

  55. Sinclair EB et al (2015) Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats. Physiol Behav 152(Pt A):249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Klump KL et al (2013) Sex differences in binge eating patterns in male and female adult rats. Int J Eat Disord 46(7):729–736

    Article  PubMed  Google Scholar 

  57. Boggiano MM et al (2007) High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating. Int J Obes 31(9):1357–1367

    Article  CAS  Google Scholar 

  58. Klump KL, Culbert KM, Sisk CL (2017) Sex differences in binge eating: gonadal hormone effects across development. Annu Rev Clin Psychol 13(1):183–207

    Article  PubMed  Google Scholar 

  59. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang G-J et al (2011) Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity (Silver Spring) 19(8):1601–1608

    Article  CAS  Google Scholar 

  61. Javaras KN et al (2008) Co-occurrence of binge eating disorder with psychiatric and medical disorders. J Clin Psychiatry 69(2):266–273

    Article  PubMed  Google Scholar 

  62. Bahji A et al (2019) Prevalence of substance use disorder comorbidity among individuals with eating disorders: a systematic review and meta-analysis. Psychiatry Res 273:58–66

    Article  PubMed  Google Scholar 

  63. Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shin AC et al (2010) Reversible suppression of food reward behavior by chronic mu-opioid receptor antagonism in the nucleus accumbens. Neuroscience 170(2):580–588

    Article  CAS  PubMed  Google Scholar 

  65. Hardaway JA et al (2016) Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating. Behav Brain Res 307:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tabarin A et al (2005) Resistance to diet-induced obesity in mu-opioid receptor-deficient mice: evidence for a “thrifty gene”. Diabetes 54(12):3510–3516

    Article  CAS  PubMed  Google Scholar 

  67. Zuberi AR et al (2008) Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in mu-opioid receptor-deficient mice. Eur J Pharmacol 585(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Czyzyk TA et al (2010) kappa-opioid receptors control the metabolic response to a high-energy diet in mice. FASEB J 24(4):1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Czyzyk TA et al (2012) Mice lacking δ-opioid receptors resist the development of diet-induced obesity. FASEB J 26(8):3483–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Statnick MA et al (2012) Multiple subtypes of opioid receptors regulate binge-like (BE) feeding in rodents on an intermittent access schedule. FASEB J 26(1_supplement):889.5–889.5

    Google Scholar 

  71. Davis CA et al (2009) Dopamine for “wanting ” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity (Silver Spring) 17(6):1220–1225

    Article  CAS  Google Scholar 

  72. Sachdeo BLY et al (2019) Binge-like eating is not influenced by the murine model of OPRM1 A118G polymorphism. Front Psychol 10:246

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology 210(2):121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Endoh T et al (1992) Nor-binaltorphimine: a potent and selective kappa-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther 316:30–42

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Klarman Family Foundation Grants Program in Eating Disorders Research (TAC) and the Mayo Clinic Foundation (PT, TAC). The authors would like to thank Allison E. Sahr for guidance with intermittent access models, Paulina Smith for technical support, and the Mayo Clinic in Arizona Mouse Metabolic Phenotyping Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traci A. Czyzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, T. et al. (2021). Assessment of Binge-Like Eating Behavior in Mice Utilizing a Weekly Intermittent Access Paradigm. In: Avena, N.M. (eds) Animal Models of Eating Disorders. Neuromethods, vol 161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0924-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0924-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0923-1

  • Online ISBN: 978-1-0716-0924-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics