Skip to main content

Functionalized Carbon Nanohorns as Drug Delivery Platforms

  • Protocol
  • First Online:
Supramolecules in Drug Discovery and Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2207))

Abstract

Carbon nanohorns (CNHs) resembling a single-layered graphene sheet wrapped in a conical shape can be chemically modified in order to immobilize, carry, and release biologically active molecules. Here, we describe the major routes for the preparation of CNH-based drug delivery platforms, via covalent coupling and encapsulation, proficient to facilitate the design of sophisticated drug nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karousis I, Martinez IS, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116:4850–4883

    Article  CAS  Google Scholar 

  2. Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26:774–776

    Article  CAS  Google Scholar 

  3. Tagmatarchis N, Maigne A, Yudasaka M, Iijima S (2006) Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes. Small 2:490–494

    Article  CAS  Google Scholar 

  4. Cioffi C, Campidelli S, Brunetti FG, Meneghetti M, Prato M (2006) Functionalisation of carbon nanohorns. Chem Commun 20:2129–2131

    Article  Google Scholar 

  5. Pagona G, Karousis N, Tagmatarchis N (2008) Aryl diazonium functionalization of carbon nanohorns. Carbon 46:604–610

    Article  CAS  Google Scholar 

  6. Nakamura E, Koshino M, Tanaka T, Niimi Y, Harano K, Nakamura Y et al (2018) Imaging of conformational changes of biotinylated triamide molecules covalently bonded to a carbon nanotube surface. J Am Chem Soc 130:7808–7809

    Article  Google Scholar 

  7. Lacotte S, Garcia A, Decossas M, Al-Jamal WT, Li S, Kostarelos K et al (2008) Interfacing functionalized carbon nanohorns with primary phagocytic cells. Adv Mater 20:2421–2426

    Article  CAS  Google Scholar 

  8. Economopoulos SP, Pagona G, Yudasaka M, Iijima S, Tagmatarchis N (2009) Solvent-free microwave-assisted Bingel reaction in carbon nanohorns. J Mater Chem 19:7326–7331

    Article  CAS  Google Scholar 

  9. Karousis N, Ichihashi T, Yudasaka M, Iijima S, Tagmatarchis N (2011) Microwave-assisted functionalization of carbon nanohorns via [2+1] nitrenes cycloaddition. Chem Commun 47:1604–1606

    Article  CAS  Google Scholar 

  10. Pagona G, Katerinopoulos HE, Tagmatarchis N (2011) Synthesis, characterization, and photophysical properties of a carbon nanohorn-coumarin hybrid material. Chem Phys Lett 516:76–81

    Article  CAS  Google Scholar 

  11. Vizuete M, Gomez-Escalonilla MJ, Fierro JLG, Yudasaka M, Iijima S, Vartanian M et al (2011) A soluble hybrid material combining carbon nanohorns and C60. Chem Commun 47:12771–12773

    Article  CAS  Google Scholar 

  12. Karousis N, Sato Y, Suenaga K, Tagmatarchis N (2012) Direct evidence for covalent functionalization of carbon nanohorns by high-resolution electron microscopy imaging of C60 conjugated onto their skeleton. Carbon 50:3909–3914

    Article  CAS  Google Scholar 

  13. Pagona G, Zervaki GE, Sandanayaka AD, Ito O, Charalambidis G, Hasobe T et al (2012) Carbon nanohorn-porphyrin dimer hybrid material for enhancing light-energy conversion. J Phys Chem C 116:9439–9449

    Article  CAS  Google Scholar 

  14. Chronopoulos D, Karousis N, Ichihashi T, Yudasaka M, Iijima S, Tagmatarchis N (2013) Benzyne cycloaddition onto carbon nanohorns. Nanoscale 5:6388–6394

    Article  CAS  Google Scholar 

  15. Miyako E, Russier J, Mauro M, Cebrian C, Yawo H, Menard-Moyon C et al (2014) Photofunctional nanomodulators for bioexcitation. Angew Chem Int Ed 53:13121–13125

    Article  CAS  Google Scholar 

  16. Chronopoulos DD, Liu Z, Suenaga K, Yudasaka M, Tagmatarchis N (2016) [3 + 2] cycloaddition reaction of azomethine ylides generated by thermal ring opening of aziridines onto carbon nanohorns. RSC Adv 6:44782–44787

    Article  CAS  Google Scholar 

  17. Pagona G, Sandanayaka ASD, Maigne A, Fan J, Papavassiliou GC, Petsalakis ID et al (2007) Photoinduced electron transfer on aqueous carbon nanohorn–pyrene–tetrathiafulvalene architectures. Chem Eur J 13:7600–7607

    Article  CAS  Google Scholar 

  18. Vizuete M, Gomez-Escalonilla MJ, Fierro JLG, Sandanayaka ASD, Hasobe T, Yudasaka M et al (2010) A carbon nanohorn porphyrin supramolecular assembly for photoinduced electron-transfer processes. Chem Eur J 16:10752–107563

    Article  CAS  Google Scholar 

  19. Jiang BP, Shen LFXC, Ji SC, Shi Z, Liu CJ, Zhang L et al (2014) One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces 6:18008–18017

    Article  CAS  Google Scholar 

  20. Pagona G, Sandanayaka ASD, Araki Y, Fan J, Tagmatarchis N, Yudasaka M et al (2006) Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles. J Phys Chem B 110:20729–20732

    Article  CAS  Google Scholar 

  21. Pagona G, Fan J, Maigne A, Yudasaka M, Iijima S, Tagmatarchis N (2007) Aqueous carbon nanohorn-pyrene-porphyrin nanoensembles: controlling charge-transfer interactions. Diam Relat Mater 16:1150–1153

    Article  CAS  Google Scholar 

  22. Mountrichas G, Ichihashi T, Pispas S, Yudasaka M, Iijima S, Tagmatarchis N (2009) Solubilization of carbon nanohorns by block polyelectrolyte wrapping and templated formation of gold nanoparticles. J Phys Chem C 113:5444–5449

    Article  CAS  Google Scholar 

  23. Pagona G, Tagmatarchis N, Fan J, Yudasaka M, Iijima S (2006) Cone-end functionalization of carbon nanohorns. Chem Mater 18:3918–3920

    Article  CAS  Google Scholar 

  24. Sandanayaka ASD, Pagona G, Tagmatarchis N, Yudasaka M, Iijima S, Araki Y et al (2007) Photoinduced electron-transfer processes of carbon nanohorns with covalently linked pyrene chromophores: charge-separation and electron-migration systems. J Mater Chem 17:2540–2546

    Article  CAS  Google Scholar 

  25. Pagona G, Sandanayaka ASD, Araki Y, Fan J, Tagmatarchis N, Charalambidis G et al (2007) Covalent functionalization of carbon nanohorns with porphyrins: nanohybrid formation and photoinduced electron and energy transfer. Adv Funct Mater 17:1705–1711

    Article  CAS  Google Scholar 

  26. Cioffi C, Campidelli S, Sooambar C, Marcaccio M, Marcolongo G, Meneghetti M et al (2007) Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J Am Chem Soc 129:3938–3945

    Article  CAS  Google Scholar 

  27. Pagona G, Sandanayaka ASD, Hasobe T, Charalambidis G, Coutsolelos AG, Yudasaka M et al (2008) Characterization and photoelectrochemical properties of nanostructured thin film composed of carbon nanohorns covalently functionalized with porphyrins. J Phys Chem C 112:15735–15741

    Article  CAS  Google Scholar 

  28. Rotas G, Sandanayaka ASD, Tagmatarchis N, Ichihashi T, Yudasaka M, Iijima S et al (2008) (Terpyridine)copper(II)-carbon nanohorns: metallo-nanocomplexes for photoinduced charge separation. J Am Chem Soc 130:4725–4731

    Article  CAS  Google Scholar 

  29. Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka ASD, Ito O et al (2008) Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci U S A 105:14773–14778

    Article  CAS  Google Scholar 

  30. Sandanayaka ASD, Ito O, Zhang M, Ajima K, Iijima S, Yudasaka M et al (2009) Photoinduced electron transfer in zinc phthalocyanine loaded on single-walled carbon nanohorns in aqueous solution. Adv Mater 21:4366–4371

    Article  CAS  Google Scholar 

  31. Karousis N, Ichihashi T, Chen S, Shinohara H, Yudasaka M, Iijima S et al (2010) Imidazolium modified carbon nanohorns: switchable solubility and stabilization of metal nanoparticles. J Mater Chem 20:2959–2964

    Article  CAS  Google Scholar 

  32. Vizuete M, Gomez-Escalonilla MJ, Fierro JLG, Ohkubo K, Fukuzumi S, Yudasaka M et al (2014) Photoinduced electron transfer in a carbon nanohorn-C60 conjugate. Chem Sci 5:2072–2080

    Article  CAS  Google Scholar 

  33. Zhang MF, Yudasaka M, Ajima K, Miyawaki A, Iijima S (2007) Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1:265–272

    Article  CAS  Google Scholar 

  34. Xu J, Zhang M, Nakamura M, Iijima S, Yudasaka M (2010) Double oxidation with oxygen and hydrogen peroxide for hole-forming in single wall carbon nanohorns. Appl Phys A Mater Sci Process 100:379–383

    Article  CAS  Google Scholar 

  35. Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Mol Pharm 2:475–480

    Article  CAS  Google Scholar 

  36. Jianxun X, Yudasaka M, Kouraba S, Sekido M, Yamamoto Y, Iijima S (2008) Single wall carbon nanohorn as a drug carrier for controlled release. Chem Phys Lett 461:189–192

    Article  Google Scholar 

  37. Guerra J, Herrero MA, Vazquez E (2014) Carbon nanohorns as alternative gene delivery vectors. RSC Adv 4:27315–27321

    Article  CAS  Google Scholar 

  38. Li N, Zhao Q, Shu C, Ma X, Li R, Shen H et al (2014) Targeted killing of cancer cells in vivo and in vitro with IGF-IR antibody-directed carbon nanohorns based drug delivery. Int J Pharm 478:644–654

    Article  Google Scholar 

Download references

Acknowledgments

Partial support by the project “National Infrastructure in Nanotechnology, Advanced Materials and Micro-/Nanoelectronics” (MIS 5002772) which is implemented under the “Reinforcement of the Research and Innovation Infrastructures,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund), is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Tagmatarchis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stergiou, A., Tagmatarchis, N. (2021). Functionalized Carbon Nanohorns as Drug Delivery Platforms. In: Mavromoustakos, T., Tzakos, A.G., Durdagi, S. (eds) Supramolecules in Drug Discovery and Drug Delivery. Methods in Molecular Biology, vol 2207. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0920-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0920-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0919-4

  • Online ISBN: 978-1-0716-0920-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics