Skip to main content

The Preparation of Chicken Kidney Cell Cultures for Virus Propagation

  • Protocol
  • First Online:
Coronaviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2203))

Abstract

Chicken kidney (CK) cells have been widely utilized in virus research studies for many years. The optimized technique of primary CK cell culture production involving both mechanical and enzymatic disaggregation is described. This updated method proved to consistently give high cell yields and resultant cultures are readily used for virus assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maassab HF (1959) The propagation of multiple viruses in chick kidney cultures. Proc Natl Acad Sci U S A 45(7):1035–1039. https://doi.org/10.1073/pnas.45.7.1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tannock GA, Bryce DA, Paul JA (1985) Evaluation of chicken kidney and chicken embryo kidney cultures for the large-scale growth of attenuated influenza virus master strain A/Ann/Arbor/6/60-ca. Vaccine 3(3):333–339

    Article  CAS  PubMed  Google Scholar 

  3. Freshney RI (2011) Primary culture. In: Freshney RI (ed) Culture of animals cells: a manual of basic technique and specialized applications, edn. Wiley, New York, pp 163–186. doi:10.1002/9780470649367.ch11

    Google Scholar 

  4. Kendal AP, Kiley MP, Maassab HF (1973) Comparative studies of wild-type and "cold-mutant" (temperature-sensitive) influenza viruses: polypeptide synthesis by an Asian (H2N2) strain and its cold-adapted variant. J Virol 12(6):1503–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parkin NT, Chiu P, Coelingh K (1997) Genetically engineered live attenuated influenza a virus vaccine candidates. J Virol 71(4):2772–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seo SH, Collisson EW (1997) Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J Virol 71(7):5173–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hughes CS, Jones RC (1988) Comparison of cultural methods for primary isolation of infectious laryngotracheitis virus from field material. Avian Pathol 17(2):295–303. https://doi.org/10.1080/03079458808436448

    Article  CAS  PubMed  Google Scholar 

  8. Maier HJ, Neuman BW, Bickerton E, Keep SM, Alrashedi H, Hall R, Britton P (2016) Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity. Sci Rep 6:27126. https://doi.org/10.1038/srep27126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota PA, Bankamp B, Bellini WJ, Zaki SR (2004) Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis 10(2):320–326. https://doi.org/10.3201/eid1002.030913

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maier HJ, Hawes PC, Cottam EM, Mantell J, Verkade P, Monaghan P, Wileman T, Britton P (2013) Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes. MBio 4(5):e00801–e00813. https://doi.org/10.1128/mBio.00801-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P (2018) The S2 subunit of infectious bronchitis virus Beaudette is a determinant of cellular tropism. J Virol 92(19). https://doi.org/10.1128/jvi.01044-18

  12. Casais R, Dove B, Cavanagh D, Britton P (2003) Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 77(16):9084–9089. https://doi.org/10.1128/jvi.77.16.9084-9089.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Batra A, Maier HJ, Fife MS (2017) Selection of reference genes for gene expression analysis by real-time qPCR in avian cells infected with infectious bronchitis virus. Avian Pathol 46(2):173–180. https://doi.org/10.1080/03079457.2016.1235258

    Article  CAS  PubMed  Google Scholar 

  14. Hennion RM, Hill G (2015) The preparation of chicken kidney cell cultures for virus propagation. Methods Mol Biol 1282:57–62. https://doi.org/10.1007/978-1-4939-2438-7_6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Elena Lokhman and Srijana Rai contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lokhman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lokhman, E., Rai, S., Matthews, W. (2020). The Preparation of Chicken Kidney Cell Cultures for Virus Propagation. In: Maier, H., Bickerton, E. (eds) Coronaviruses. Methods in Molecular Biology, vol 2203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0900-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0900-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0899-9

  • Online ISBN: 978-1-0716-0900-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics