Skip to main content

Determining How Coronaviruses Overcome the Interferon and Innate Immune Response

  • Protocol
  • First Online:
Coronaviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2203))

Abstract

All viruses have to overcome the innate immune response in order to establish infection. Methods have been developed to assay if, and how, viruses overcome these responses, and many can be directly applied to coronaviruses. Here, in vitro methods to determine how coronaviruses overcome this response are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kell AM, Gale M Jr (2015) RIG-I in RNA virus recognition. Virology 479-480:110–121. https://doi.org/10.1016/j.virol.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  2. Chattopadhyay S, Sen GC (2017) RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA): a new antiviral pathway. Protein Cell 8(3):165–168. https://doi.org/10.1007/s13238-016-0334-x

    Article  CAS  PubMed  Google Scholar 

  3. Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB (2014) The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol 95(Pt 4):874–882. https://doi.org/10.1099/vir.0.062059-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coleman CM, Sisk JM, Halasz G, Zhong J, Beck SE, Matthews KL, Venkataraman T, Rajagopalan S, Kyratsous CA, Frieman MB (2017) CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome. J Virol 91(1). https://doi.org/10.1128/JVI.01825-16

  5. Coleman CM, Frieman MB (2015) Growth and quantification of MERS-CoV infection. Curr Protoc Microbiol 37:15E.2.1-9. https://doi.org/10.1002/9780471729259.mc15e02s37

    Article  PubMed  Google Scholar 

  6. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430. https://doi.org/10.1038/nature06553

    Article  CAS  PubMed  Google Scholar 

  7. Wang SM, Huang KJ, Wang CT (2014) BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface. Virology 449:287–296. https://doi.org/10.1016/j.virol.2013.11.030

    Article  CAS  PubMed  Google Scholar 

  8. Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkataraman T, Sundberg EJ, Frieman MB (2015) Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J Virol 89(23):11820–11833. https://doi.org/10.1128/JVI.02274-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS (2013) Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 110(40):16157–16162. https://doi.org/10.1073/pnas.1311542110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Almazan F, DeDiego ML, Sola I, Zuniga S, Nieto-Torres JL, Marquez-Jurado S, Andres G, Enjuanes L (2013) Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. mBio 4(5):e00650-13. https://doi.org/10.1128/mBio.00650-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morner A, Bjorndal A, Albert J, Kewalramani VN, Littman DR, Inoue R, Thorstensson R, Fenyo EM, Bjorling E (1999) Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J Virol 73(3):2343–2349

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank the laboratory of Dr. Matthew Frieman for providing background and details for some methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Coleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coleman, C.M. (2020). Determining How Coronaviruses Overcome the Interferon and Innate Immune Response. In: Maier, H., Bickerton, E. (eds) Coronaviruses. Methods in Molecular Biology, vol 2203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0900-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0900-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0899-9

  • Online ISBN: 978-1-0716-0900-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics