Skip to main content

Characterization of Oxidative Lipidomics and Autophagy Induction in Chlamydomonas reinhardtii Under Abiotic Stress

  • Protocol
  • First Online:
Reactive Oxygen Species

Abstract

Autophagy constitutes an essential process triggered by oxidative stress that enables cells to recycle damaged biomolecules and organelles, which is eventually traced by immunodetection with anti-ATG8. In parallel with autophagy induction, carbon metabolism in Chlamydomonas reinhardtii under abiotic stress is diverged toward lipid biosynthesis and lipid droplet accumulation, which can be analyzed by a simple thin-layer chromatography and in vivo staining with the fluorescent probe BODIPY 493/503. We show the responses in Chlamydomonas cells exposed to mercury or cadmium (0–50 μM doses), as examples of oxidative stress-mediated changes in autophagy and lipid metabolism, monitored with the procedures described in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299

    Article  PubMed  CAS  Google Scholar 

  2. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/s1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  3. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo F, Carpena-Ruiz R (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107. https://doi.org/10.1111/j.1469-8137.2007.02162.x

    Article  PubMed  CAS  Google Scholar 

  5. Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164. https://doi.org/10.1104/pp.112.199992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of ATG proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

    Article  PubMed  CAS  Google Scholar 

  7. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Oshumi Y (2000) The reversible modification regulates the membrane-binding state of ATG8/ATG7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276. https://doi.org/10.1083/jcb.151.2.263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pérez-Pérez ME, Florencio FJ, Crespo JL (2010) Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152:1874–1888. https://doi.org/10.1104/pp.109.152520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Couso I, Pérez-Pérez ME, Martínez-Force E, Kim HS, He Y, Umen JG, Crespo JL (2017) Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas. J Exp Bot 69:1355–1367. https://doi.org/10.1093/jxb/erx372

    Article  PubMed Central  CAS  Google Scholar 

  10. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–1669. https://doi.org/10.1073/pnas.54.6.1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to NC sheets: procedure and applications. Proc Natl Acad Sci U S A 76:4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hernández LE, Brewin NJ, Drøbak BK (1996) Detection of glycolipids as biotinylated derivatives using enhanced chemiluminescence. Anal Biochem 241(1):59–66. https://doi.org/10.1006/abio.1996.0378

    Article  PubMed  Google Scholar 

  13. Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ (2014) Systematically programmed adaptive evolution reveals potential role of carbon and nitrogen pathways during lipid accumulation in Chlamydomonas reinhardtii. Biotechnol Biofuels 7:117. https://doi.org/10.1186/s13068-014-0117-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish MICINN grants AGL2014-53771-R and AGL2017-87591-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Ortega-Villasante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ortega-Villasante, C., Barón-Sola, Á., Toledo-Basantes, M., Martínez, F., Hernández, L.E. (2021). Characterization of Oxidative Lipidomics and Autophagy Induction in Chlamydomonas reinhardtii Under Abiotic Stress. In: Espada, J. (eds) Reactive Oxygen Species. Methods in Molecular Biology, vol 2202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0896-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0896-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0895-1

  • Online ISBN: 978-1-0716-0896-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics