Skip to main content

Use YeastFab to Construct Genetic Parts and Multicomponent Pathways for Metabolic Engineering

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2196))

Abstract

Budding yeast, as a eukaryotic model organism, has well-defined genetic information and a highly efficient recombination system, making it a good host to produce exogenous chemicals. Since most metabolic pathways require multiple genes to function in coordination, it is usually laborious and time-consuming to construct a working pathway. To facilitate the construction and optimization of multicomponent exogenous pathways in yeast, we recently developed a method called YeastFab Assembly, which includes three steps: (1) make standard and reusable genetic parts, (2) construct transcription units from characterized parts, and (3) assemble a complete pathway. Here we describe a detailed protocol of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X et al (2018) DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev 118(1):4–72

    Article  CAS  Google Scholar 

  2. Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24(6):965–972

    Article  CAS  Google Scholar 

  3. Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620

    Article  CAS  Google Scholar 

  4. Thim L et al (1986) Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A 83(18):6766–6770

    Article  CAS  Google Scholar 

  5. Guo Y et al (2015) YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res 43(13):e88

    Article  CAS  Google Scholar 

  6. Paddon CJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  CAS  Google Scholar 

  7. Ro DK et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  Google Scholar 

  8. Luo X et al (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567(7746):123–126

    Article  CAS  Google Scholar 

  9. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647

    Article  CAS  Google Scholar 

  10. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  Google Scholar 

  11. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37(2):e16

    Article  CAS  Google Scholar 

  12. Lee ME et al (2015) A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth Biol 4(9):975–986

    Article  CAS  Google Scholar 

  13. Martella A et al (2017) EMMA: an extensible mammalian modular assembly toolkit for the rapid design and production of diverse expression vectors. ACS Synth Biol 6(7):1380–1392

    Article  CAS  Google Scholar 

  14. Sarrion-Perdigones A et al (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162(3):1618–1631

    Article  CAS  Google Scholar 

  15. Weber E et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16765

    Article  CAS  Google Scholar 

  16. Yuan T et al (2017) Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Front Chem Sci Eng 11(1):107–116

    Article  CAS  Google Scholar 

  17. Garcia-Ruiz E et al (2018) YeastFab: high-throughput genetic parts construction, measurement, and pathway engineering in yeast. Methods Enzymol 608:277–306

    Article  CAS  Google Scholar 

  18. Qin Y et al (2016) EcoExpress-highly efficient construction and expression of multicomponent protein complexes in Escherichia coli. ACS Synth Biol 5(11):1239–1246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2018YFA0900100), the National Natural Science Foundation of China (31725002, 31800069, and 31800082), Shenzhen Key Laboratory of Synthetic Genomics (ZDSYS201802061806209), Shenzhen Science and Technology Program (KQTD20180413181837372), Guangdong Provincial Key Laboratory of Synthetic Genomics (2019B030301006), and Bureau of International Cooperation, Chinese Academy of Sciences (172644KYSB20180022, 172644KYSB20170042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbiao Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jiang, S., Luo, Z., Dai, J. (2021). Use YeastFab to Construct Genetic Parts and Multicomponent Pathways for Metabolic Engineering. In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 2196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0868-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0868-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0867-8

  • Online ISBN: 978-1-0716-0868-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics