Skip to main content

Production and Analysis of Human Primordial Germ Cell–Like Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2195))

Abstract

Primordial germ cells (PGCs) are common ancestors of all germline cells. In mammals, PGCs emerge in early-stage embryos around the timing of gastrulation at or near epiblast, and specification of PGCs from their precursor cells involves multiple growth factors secreted by adjacent cells. Recent advancements in germline stem cell biology have made it possible to generate PGC-like cell culture models (PGCLCs for PGC-like cells) from human and mouse pluripotent stem cells by mimicking the embryonic growth factor environment in vitro. Here we describe a method of producing human PGCLCs from primed-pluripotency induced pluripotent stem cells (iPSCs) via temporal conversion to naive pluripotency followed by formation of embryoid bodies (EBs) using the spin-EB method.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. De Felici M (2012) Origin, migration, and proliferation of human primordial germ cells. In: Oogenesis. Springer, London, pp 19–37. https://doi.org/10.1007/978-0-85729-826-3_2

    Chapter  Google Scholar 

  2. Saitou M, Yamaji M (2012) Primordial germ cells in mice. Cold Spring Harb Perspect Biol 4:a008375–a008375. https://doi.org/10.1101/cshperspect.a008375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oosterhuis JW, Looijenga LHJ (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5:210–222. https://doi.org/10.1038/nrc1568

    Article  CAS  PubMed  Google Scholar 

  4. Le Cornet C, Lortet-Tieulent J, Forman D, Béranger R, Flechon A, Fervers B et al (2014) Testicular cancer incidence to rise by 25% by 2025 in Europe? Model-based predictions in 40 countries using population-based registry data. Eur J Cancer 50:831–839. https://doi.org/10.1016/j.ejca.2013.11.035

    Article  PubMed  Google Scholar 

  5. Ghazarian AA, Kelly SP, Altekruse SF, Rosenberg PS, McGlynn KA (2017) Future of testicular germ cell tumor incidence in the United States: forecast through 2026. Cancer 3:13–2328. https://doi.org/10.1002/cncr.30597

    Article  CAS  Google Scholar 

  6. Magnúsdóttir E, Surani MA (2014) How to make a primordial germ cell. Development 141:245–252. https://doi.org/10.1242/dev.098269

    Article  CAS  PubMed  Google Scholar 

  7. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137:571–584. https://doi.org/10.1016/j.cell.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  8. Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ et al (2003) The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130:4279–4286. https://doi.org/10.1242/dev.00640

    Article  CAS  PubMed  Google Scholar 

  9. Hilz S, Fogarty EA, Modzelewski AJ, Cohen PE, Grimson A (2017) Transcriptome profiling of the developing male germ line identifies the miR-29 family as a global regulator during meiosis. RNA Biol 14:219–235. https://doi.org/10.1080/15476286.2016.1270002

    Article  PubMed  Google Scholar 

  10. Sasaki K, Nakamura T, Okamoto I, Yabuta Y, Iwatani C, Tsuchiya H et al (2016) The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev Cell 39:169–185. https://doi.org/10.1016/j.devcel.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  11. Clark AT, Gkountela S, Chen D, Liu W, Sosa E, Sukhwani M et al (2017) Primate primordial germ cells acquire transplantation potential by carnegie stage 23. Stem Cell Rep 9:329–341. https://doi.org/10.1016/j.stemcr.2017.05.002

    Article  CAS  Google Scholar 

  12. Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440. https://doi.org/10.1371/journal.pgen.1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinberger L, Ayyash M, Novershtern N, Hanna JH (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17:155–169. https://doi.org/10.1101/030676

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532. https://doi.org/10.1016/j.cell.2011.06.052

    Article  CAS  PubMed  Google Scholar 

  15. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D et al (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286. https://doi.org/10.1038/nature12745

    Article  CAS  PubMed  Google Scholar 

  16. Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS et al (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160:253–268. https://doi.org/10.1016/j.cell.2014.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ, Krueger F et al (2016) Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification. Dev Cell 39:104–115. https://doi.org/10.1016/j.devcel.2016.09.015

    Article  CAS  Google Scholar 

  18. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K et al (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17:178–194. https://doi.org/10.1016/j.stem.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  19. Sugawa F, Araúzo-Bravo MJ, Yoon J, Kim K-P, Aramaki S, Wu G et al (2015) Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 34:1009–1024. https://doi.org/10.15252/embj.201488049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mitsunaga S, Odajima J, Yawata S, Shioda K, Owa C, Isselbacher KJ et al (2017) Relevance of iPSC-derived human PGC-like cells at the surface of embryoid bodies to prechemotaxis migrating PGCs. Proc Natl Acad Sci U S A 114:E9913–E9922. https://doi.org/10.1073/pnas.1707779114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen D, Liu W, Lukianchikov A, Hancock GV, Zimmerman J, Lowe MG et al (2017) Germline competency of human embryonic stem cells depends on eomesodermin. Biol Reprod 97:850–861. https://doi.org/10.1093/biolre/iox138

    Article  PubMed  PubMed Central  Google Scholar 

  22. Antonchuk J (2013) Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates. Methods Mol Biol 946:523–533. https://doi.org/10.1007/978-1-62703-128-8_32

    Article  CAS  PubMed  Google Scholar 

  23. Pal A, Kleer CG (2014) Three dimensional cultures: a tool to study normal acinar architecture vs. malignant transformation of breast cells. J Vis Exp:e51311. https://doi.org/10.3791/51311

Download references

Acknowledgments

We thank Shiomi Yawata and Chie Owa for technical assistance during initial studies. This study was supported by NIEHS/NIH grants R01 ES023316 and R21ES024861 to TS, and by Flight Attendant Medical Research Institute (FAMRI) grant to JHH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshi Shioda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mitsunaga, S., Shioda, K., Hanna, J.H., Isselbacher, K.J., Shioda, T. (2021). Production and Analysis of Human Primordial Germ Cell–Like Cells. In: Bagrodia, A., Amatruda, J.F. (eds) Testicular Germ Cell Tumors. Methods in Molecular Biology, vol 2195. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0860-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0860-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0859-3

  • Online ISBN: 978-1-0716-0860-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics