Skip to main content

High-Dimensional Flow Cytometry Analysis of Regulatory Receptors on Human T Cells, NK Cells, and NKT Cells

  • Protocol
  • First Online:
Translational Bioinformatics for Therapeutic Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2194))

Abstract

The field of flow cytometry has witnessed rapid technological advancements in the last few decades. While the founding principles of fluorescent detection on cells (or particles) within a uniform fluid stream remains largely unchanged, the availability more sensitive cytometers with the ability to multiplex more and more florescent signals has resulted in very complex high-order assays. This results in the co-use of fluorophores with increased levels of emission overlap and/or spillover spreading than in years past and thus requires careful and well thought out planning for flow cytometry assay development. As an example, we present the development of a large 18-color (20 parameter) flow cytometry assay designed to take an in depth analysis of effector lymphocyte phenotypes, with careful attention to assay controls and panel design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klebanoff CA, Gattinoni L, Restifo NP (2012) Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother 35(9):651–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Colonna M, Nakajima H, Navarro F, Lopez-Botet M (1999) A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J Leukoc Biol 66(3):375–381

    Article  CAS  PubMed  Google Scholar 

  3. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6(7):520–531

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11(3):197–206

    Article  CAS  PubMed  Google Scholar 

  5. Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182(6):2091–2096

    Article  CAS  PubMed  Google Scholar 

  6. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268(5212):863–865

    Article  CAS  PubMed  Google Scholar 

  7. Exley M, Garcia J, Balk SP, Porcelli S (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4−CD8− T cells. J Exp Med 186(1):109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel SA, Minn AJ (2018) Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van den Broek T, Borghans JAM, van Wijk F (2018) The full spectrum of human naive T cells. Nat Rev Immunol 18(6):363–373

    Article  PubMed  Google Scholar 

  10. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter L, Fouser LA, Jussif J et al (2002) PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 32(3):634–643

    Article  CAS  PubMed  Google Scholar 

  12. Grosso JF, Kelleher CC, Harris TJ et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  CAS  PubMed  Google Scholar 

  14. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res 71(10):3540–3551

    Article  CAS  PubMed  Google Scholar 

  15. Yang YF, Zou JP, Mu J et al (1997) Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res 57(18):4036–4041

    CAS  PubMed  Google Scholar 

  16. Zhu C, Anderson AC, Schubart A et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez IB, Pasquinelli V, Jurado JO et al (2010) Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis. J Infect Dis 202(4):524–532

    Article  CAS  PubMed  Google Scholar 

  18. Beldi-Ferchiou A, Lambert M, Dogniaux S et al (2016) PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7(45):72961–72977

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gleason MK, Lenvik TR, McCullar V et al (2012) Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119(13):3064–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ndhlovu LC, Lopez-Verges S, Barbour JD et al (2012) Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119(16):3734–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pesce S, Greppi M, Tabellini G et al (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J Allergy Clin Immunol 139(1):335–346.e333

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Q, Bi J, Zheng X et al (2018) Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. https://doi.org/10.1038/s41590-018-0132-0

  23. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  24. Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285(5428):727–729

    Article  CAS  PubMed  Google Scholar 

  25. Marcus A, Gowen BG, Thompson TW et al (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122:91–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pende D, Cantoni C, Rivera P et al (2001) Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31(4):1076–1086

    Article  CAS  PubMed  Google Scholar 

  27. Kuylenstierna C, Bjorkstrom NK, Andersson SK et al (2011) NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1d. Eur J Immunol 41(7):1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu J, Mitsui T, Wei M et al (2011) NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J Clin Invest 121(4):1456–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189(12):1973–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao CM, Zimmer MI, Wang CR (2013) The functions of type I and type II natural killer T cells in inflammatory bowel diseases. Inflamm Bowel Dis 19(6):1330–1338

    Article  PubMed  Google Scholar 

  31. Arrenberg P, Halder R, Dai Y, Maricic I, Kumar V (2010) Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci U S A 107(24):10984–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI (2005) Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 35(5):1399–1407

    Article  CAS  PubMed  Google Scholar 

  33. Stabile H, Fionda C, Gismondi A, Santoni A (2017) Role of distinct natural killer cell subsets in anticancer response. Front Immunol 8:293

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carrega P, Bonaccorsi I, Di Carlo E et al (2014) CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J Immunol 192(8):3805–3815

    Article  CAS  PubMed  Google Scholar 

  35. Mamessier E, Pradel LC, Thibult ML et al (2013) Peripheral blood NK cells from breast cancer patients are tumor-induced composite subsets. J Immunol 190(5):2424–2436

    Article  CAS  PubMed  Google Scholar 

  36. Spits H, Artis D, Colonna M et al (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149

    Article  CAS  PubMed  Google Scholar 

  37. Montaldo E, Vacca P, Vitale C et al (2016) Human innate lymphoid cells. Immunol Lett 179:2–8

    Article  CAS  PubMed  Google Scholar 

  38. Morita H, Moro K, Koyasu S (2016) Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 138(5):1253–1264

    Article  CAS  PubMed  Google Scholar 

  39. Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12(1):21–27

    Article  CAS  PubMed  Google Scholar 

  40. Hazenberg MD, Spits H (2014) Human innate lymphoid cells. Blood 124(5):700–709

    Article  CAS  PubMed  Google Scholar 

  41. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517(7534):293–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Moffitt Cancer Center—Innovative Core Projects (Project number 16060201), NCI–NIH (1 R01 CA148995-01; P30CA076292; P50CA168536), the V Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, and the Chris Sullivan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. Mailloux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakagawa, R., Brayer, J., Restrepo, N., Mulé, J.J., Mailloux, A.W. (2021). High-Dimensional Flow Cytometry Analysis of Regulatory Receptors on Human T Cells, NK Cells, and NKT Cells. In: Markowitz, J. (eds) Translational Bioinformatics for Therapeutic Development. Methods in Molecular Biology, vol 2194. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0849-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0849-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0848-7

  • Online ISBN: 978-1-0716-0849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics