Skip to main content

Sucrose Gradient Sedimentation Analysis of Mitochondrial Ribosomes

  • Protocol
  • First Online:
Mitochondrial Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2192))

Abstract

Mitochondria contain ribosomes (mitoribosomes) specialized in the synthesis of a handful of proteins essential for oxidative phosphorylation. Therefore, mitoribosome integrity and function are essential for the life of eukaryotic cells and lesions that affect them result in devastating human disorders. To broadly analyze the integrity and assembly state of mitoribosomes it is useful to start by determining the sedimentation profile of these structures by sucrose gradient centrifugation of mitochondrial extracts. During centrifugation, mitoribosome subunits, monosomes and polysomes, and potentially accumulated assembly intermediates will sediment through the gradient at different rates. Sedimentation will depend on the centrifugal force applied and the density and viscosity of the gradient. Importantly, it will also depend on the size, shape, and density of the mitoribosome particles present in the samples under study. Variations of this technique, often coupled with additional downstream approaches, have been used to analyze the process of mitoribosome biogenesis, the composition of assembly intermediates, or to monitor the interaction of extraribosomal proteins with individual mitoribosome subunits or monosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margulis L (1975) Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp Soc Exp Biol 29:21–38

    Google Scholar 

  2. Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V (2015) The structure of the human mitochondrial ribosome. Science 348:95–98

    Article  CAS  Google Scholar 

  3. Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N (2015) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348:303–308

    Article  CAS  Google Scholar 

  4. Lightowlers RN, Taylor RW, Turnbull DM (2015) Mutations causing mitochondrial disease: what is new and what challenges remain? Science 349:1494–1499

    Article  CAS  Google Scholar 

  5. Murphy MP, Hartley RC (2018) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 5:174

    Google Scholar 

  6. De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A (2015) Mitochondrial ribosome assembly in health and disease. Cell Cycle 14:2226–2250

    Article  Google Scholar 

  7. Kim HJ, Maiti P, Barrientos A (2017) Mitochondrial ribosomes in cancer. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.1004.1004

  8. Zeng R, Smith E, Barrientos A (2018) Yeast mitoribosome large subunit assembly proceeds by hierarchical incorporation of protein clusters and modules on the inner membrane. Cell Metab 27:645–656

    Article  CAS  Google Scholar 

  9. Bogenhagen DF, Ostermeyer-Fay AG, Haley JD, Garcia-Diaz M (2018) Kinetics and mechanism of mammalian mitochondrial ribosome assembly. Cell Rep 22:1935–1944

    Article  CAS  Google Scholar 

  10. Bogenhagen DF, Martin DW, Koller A (2014) Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab 19:618–629. https://doi.org/10.1016/j.cmet.2014.1003.1013

    Article  CAS  PubMed  Google Scholar 

  11. Tu YT, Barrientos A (2015) The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10:854–864

    Article  CAS  Google Scholar 

  12. Lavdovskaia E, Kolander E, Steube E, Mai MM, Urlaub H, Richter-Dennerlein R (2018) The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis. Nucleic Acids Res 46:8471–8482

    Article  CAS  Google Scholar 

  13. Maiti P, Kim HJ, Tu YT, Barrientos A (2018) Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res 46:11423–11437

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim H-J, Barrientos A (2018) MTG1 couples mitoribosome large subunit assembly and intersubunit bridge formation. Nucleic Acids Res 46(16):8435–8453

    Article  CAS  Google Scholar 

  15. De Silva D, Fontanesi F, Barrientos A (2013) The DEAD-Box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit. Cell Metab 18:712–725

    Article  Google Scholar 

  16. De Silva D, Poliquin S, Zeng R, Zamudio-Ochoa A, Marrero N, Perez-Martinez X, Fontanesi F, Barrientos A (2017) The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 45:6628–6643

    Article  Google Scholar 

  17. Fernandez-Vizarra E, Ferrin G, Perez-Martos A, Fernandez-Silva P, Zeviani M, Enriquez JA (2010) Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10:253–262

    Article  CAS  Google Scholar 

  18. Horn D, Fontanesi F, Barrientos A (2008) Exploring protein-protein interactions involving newly synthesized mitochondrial DNA-encoded proteins. Methods Mol Biol 457:125–139

    Article  CAS  Google Scholar 

  19. Kehrein K, Schilling R, Moller-Hergt BV, Wurm CA, Jakobs S, Lamkemeyer T, Langer T, Ott M (2015) Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep 12:S2211–S1247

    Google Scholar 

  20. Couvillion MT, Soto IC, Shipkovenska G, Churchman LS (2016) Synchronized mitochondrial and cytosolic translation programs. Nature 533:499–503

    Article  CAS  Google Scholar 

  21. Vignais PV, Stevens BJ, Huet J, Andre J (1972) Mitoribosomes from Candida utilis. Morphological, physical, and chemical characterization of the monomer form and of its subunits. J Cell Biol 54:468–492

    Article  CAS  Google Scholar 

  22. Meisinger C, Pfanner N, Truscott KN (2006) Isolation of yeast mitochondria. Methods Mol Biol 313:33–39

    CAS  PubMed  Google Scholar 

  23. Glick BS, Pon LA (1995) Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol 260:213–223

    Article  CAS  Google Scholar 

  24. Davies E, Abe S (1995) Methods for isolation and analysis of polyribosomes. Methods Cell Biol 50:209–222

    Article  CAS  Google Scholar 

  25. Stone AB (1974) A simplified method for preparing sucrose gradients. Biochem J 137:117–118

    Article  CAS  Google Scholar 

  26. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Priyanka Maiti for critical reading of the manuscript. This research was supported by NIH R35 Grant GM118141 (to A.B.) and MDA Grant MDA-381828 (to A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Barrientos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, A., Barrientos, A. (2021). Sucrose Gradient Sedimentation Analysis of Mitochondrial Ribosomes. In: Minczuk, M., Rorbach, J. (eds) Mitochondrial Gene Expression. Methods in Molecular Biology, vol 2192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0834-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0834-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0833-3

  • Online ISBN: 978-1-0716-0834-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics