Skip to main content

Dissecting Mechanisms of Motivation within the Nucleus Accumbens Using Optogenetics

  • Protocol
  • First Online:
Channelrhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2191))

  • 1008 Accesses

Abstract

Studies mapping psychological functions to discrete brain regions often require manipulations that yield changes in a particular area and observing a subsequent shift in behavior. As investigators tap into neural underpinnings of behavior, it is useful to utilize technologies that permit temporally and spatially discrete shifts in neural signaling and neurobiological processes. This chapter contains protocols for creating “Fos plumes,” a means of mapping alterations in neural activity induced by neural manipulations. By localizing increases or decreases in c-Fos in targeted brain regions, the relative spread of each manipulation can be mapped, and the functional roles of individual mechanisms within particular brain areas can be defined. The chapter also provides examples of behavioral testing protocols using optogenetics to localize psychological functions in the nucleus accumbens (NAc), a brain region involved in the production of motivated behaviors. Together, these methods provide avenues for researchers to localize and causally demonstrate the impact of neural manipulations in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan JI, Cohen DR, Hempstead JL et al (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197

    Article  CAS  PubMed  Google Scholar 

  2. Peciña S, Berridge KC (2000) Opioid site in nucleus accumbens shell mediates eating and hedonic “liking” for food: map based on microinjection Fos plumes. Brain Res 863:71–86

    Article  PubMed  Google Scholar 

  3. Mahler SV, Smith KS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances “liking” of a sweet reward. Neuropsychopharmacology 32:2267–2278

    Article  CAS  PubMed  Google Scholar 

  4. Castro DC, Terry RA, Berridge KC (2016) Orexin in rostral hotspot of nucleus accumbens enhances sucrose “liking” and intake but scopolamine in caudal shell shifts “liking” toward “disgust” and “fear”. Neuropsychopharmacology 41:2101–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castro DC, Berridge KC (2017) Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc Natl Acad Sci U S A 114:E9125–E9134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warlow SM, Robinson MJF, Berridge KC (2017) Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine. J Neurosci 37:8330–8348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cole SL, Robinson MJF, Berridge KC (2018) Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. Plos One. 13:e0207694

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reynolds SM, Berridge KC (2008) Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat Neurosci 11:423–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richard JM, Berridge KC (2011) Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D(1) alone for appetitive eating but D(1) and D(2) together for fear. J Neurosci 31:12866–12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faure A, Reynolds SM, Richard JM et al (2008) Mesolimbic dopamine in desire and dread: enabling motivation to be generated by localized glutamate disruptions in nucleus accumbens. J Neurosci 28:7184–7192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rolls ET (1975) The neural basis of brain-stimulation reward. Prog Neurobiol 3:73–160

    CAS  PubMed  Google Scholar 

  12. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  CAS  PubMed  Google Scholar 

  13. Filibeck U, Cabib S, Castellano C et al (1988) Chronic cocaine enhances defensive behaviour in the laboratory mouse: involvement of D2 dopamine receptors. Psychopharmacology 96:437–441

    Article  CAS  PubMed  Google Scholar 

  14. Reynolds SM, Berridge KC (2001) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J Neurosci 21:3261–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reynolds SM, Berridge KC (2002) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci 22:7308–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelley AE, Baldo BA, Pratt WE (2005) A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 493:72–85

    Article  CAS  PubMed  Google Scholar 

  17. Carlezon WA, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology. 56(Suppl 1):122–132

    Article  CAS  PubMed  Google Scholar 

  18. Vuust P, Kringelbach ML (2010) The pleasure of making sense of music. Interdiscip Sci Rev 35:166–182

    Article  Google Scholar 

  19. Salimpoor VN, Benovoy M, Larcher K et al (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–262

    Article  CAS  PubMed  Google Scholar 

  20. Hernandez G, Trujillo-Pisanty I, Cossette M-P et al (2012) Role of dopamine tone in the pursuit of brain stimulation reward. J Neurosci 32:11032–11041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richard JM, Plawecki AM, Berridge KC (2013) Nucleus accumbens GABAergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine. Eur J Neurosci 37:1789–1802

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saunders BT, Yager LM, Robinson TE (2013) Cue-evoked cocaine “craving”: role of dopamine in the accumbens core. J Neurosci 33:13989–14000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castro DC, Berridge KC (2014) Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci 34:4239–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zatorre RJ (2015) Musical pleasure and reward: mechanisms and dysfunction. Ann N Y Acad Sci 1337:202–211

    Article  PubMed  Google Scholar 

  25. Mueller K, Fritz T, Mildner T et al (2015) Investigating the dynamics of the brain response to music: A central role of the ventral striatum/nucleus accumbens. NeuroImage 116:68–79

    Article  PubMed  Google Scholar 

  26. Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic Advances from the Brain Disease Model of Addiction. N Engl J Med 374:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koo JW, Lobo MK, Chaudhury D et al (2014) Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition. Neuropsychopharmacology 39:2646–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lobo MK, Covington HE, Chaudhury D et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamlin AS, Blatchford KE, McNally GP (2006) Renewal of an extinguished instrumental response: neural correlates and the role of D1 dopamine receptors. Neuroscience 143:25–38

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt HD, Anderson SM, Pierce RC (2006) Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core, of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat. Eur J Neurosci 23:219–228

    Article  PubMed  Google Scholar 

  32. Wakabayashi KT, Fields HL, Nicola SM (2004) Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav Brain Res 154:19–30

    Article  CAS  PubMed  Google Scholar 

  33. Soares-Cunha C, Coimbra B, David-Pereira A et al (2016) Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun 7:11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trifilieff P, Feng B, Urizar E et al (2013) Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry 18:1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bertran-Gonzalez J, Bosch C, Maroteaux M et al (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perreault ML, Hasbi A, O’Dowd BF et al (2011) The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in basal ganglia. Front Neuroanat 5:31

    Article  PubMed  PubMed Central  Google Scholar 

  37. Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417

    Article  PubMed  Google Scholar 

  38. Larson EB, Wissman AM, Loriaux AL et al (2015) Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci 35:3537–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kupchik YM, Brown RM, Heinsbroek JA et al (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Connor EC, Kremer Y, Lefort S et al (2015) Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88:553–564

    Article  PubMed  Google Scholar 

  41. Castro DC, Cole SL, Berridge KC (2015) Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Frontiers in Systems Neuroscience. 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reynolds SM, Berridge KC (2003) Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding. Eur J Neurosci 17:2187–2200

    Article  PubMed  Google Scholar 

  43. Richard JM, Berridge KC (2011) Metabotropic glutamate receptor blockade in nucleus accumbens shell shifts affective valence towards fear and disgust. Eur J Neurosci 33:736–747

    Article  PubMed  Google Scholar 

  44. Schoenenberger P, Gerosa D, Oertner TG (2009) Temporal control of immediate early gene induction by light. Plos One 4:e8185

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stujenske JM, Spellman T, Gordon JA (2015) Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep 12:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Owen SF, Liu MH, Kreitzer AC (2019) Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci 22:1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tyssowski KM, Gray JM (2019) Blue light increases neuronal-activity-regulated gene expression in the absence of optogenetic proteins. eNeuro. https://doi.org/10.1523/ENEURO.0085-19.2019

  48. Valenstein ES, Cox VC, Kakolewski JW (1968) Modification of motivated behavior elicited by electrical stimulation of the hypothalamus. Science 159:1119–1121

    Article  CAS  PubMed  Google Scholar 

  49. Olds J (1976) Brain stimulation and the motivation of behavior. Prog Brain Res 45:401–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks K.C. Berridge, E.E. Naffziger, and H.M. Baumgartner for helpful input throughout the writing process. Original work was supported by US National Institutes of Health grants awarded to K.C.B. (DA015188 and MH063649), S.L.C (DA007267), and J.J.O. (DA007268 and DC00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cole, S.L., Olney, J.J. (2021). Dissecting Mechanisms of Motivation within the Nucleus Accumbens Using Optogenetics. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0830-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0829-6

  • Online ISBN: 978-1-0716-0830-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics