Skip to main content

Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules

  • Protocol
  • First Online:
Nanopore Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2186))

  • 1206 Accesses

Abstract

Nanopore enzymology is a powerful single-molecule technique for the label-free study of enzymes using engineered protein nanopore sensors. The technique has been applied to protein kinases, where it has enabled the full repertoire of kinase function to be observed, including: kinetics of substrate binding and dissociation, product binding and dissociation, nucleotide binding, and reversible phosphorylation. Further, minor modifications enable the screening of type I kinase inhibitors and the determination of inhibition constants in a facile and label-free manner. Here, we describe the design and production of suitably engineered protein nanopores and their use for the determination of key mechanistic parameters of kinases. We also provide procedures for the determination of inhibition constants of protein kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413:226–230

    Article  CAS  Google Scholar 

  2. Hammerstein AF, Shin SH, Bayley H (2010) Single-molecule kinetics of two-step divalent cation chelation. Angew Chem Int Ed Engl 49:5085–5090

    Article  CAS  Google Scholar 

  3. Cheley S, Gu L, Bayley H (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol 9:829–838

    Article  CAS  Google Scholar 

  4. Guan X, Gu L, Cheley S, Braha O, Bayley H (2005) Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6:1875–1881

    Google Scholar 

  5. Bezrukov SM, Vodyanoy I, Parsegian VA (1994) Counting polymers moving through a single ion channel. Nature 370:279–281

    Article  CAS  Google Scholar 

  6. Robertson JWF, Rodrigues CG, Stanford VM, Rubinson KA, Krasilnikov OV, Kasianowicz JJ (2007) Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci U S A 104:8207–8211

    Article  CAS  Google Scholar 

  7. Movileanu L, Cheley S, Bayley H (2003) Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys J 85:897–910

    Article  CAS  Google Scholar 

  8. Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat Biotechnol 30:344–348

    Google Scholar 

  9. Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. Nat Biotechnol 34:518–524

    Article  CAS  Google Scholar 

  10. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner DJ (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206

    Article  CAS  Google Scholar 

  11. Hayden E (2012) Nanopore genome sequencer makes its debut. Nature News, https://doi.org/10.1038/nature.2012.10051

  12. Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239

    Google Scholar 

  13. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773

    Article  CAS  Google Scholar 

  14. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and Phi29 DNA polymerase. Nat Biotechnol 30:349–353

    Google Scholar 

  15. Pennisi E (2012) Genome sequencing. Search for pore-fection. Science 336:534–537

    Article  CAS  Google Scholar 

  16. Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci U S A 106:7702–7707

    Article  CAS  Google Scholar 

  17. Movileanu L, Schmittschmitt JP, Scholtz JM, Bayley H (2005) Interactions of peptides with a protein pore. Biophys J 89:1030–1045

    Article  CAS  Google Scholar 

  18. Kukwikila M, Howorka S (2010) Electrically sensing protease activity with nanopores. J Phys Condens Matter 22:454103

    Article  Google Scholar 

  19. Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18:1091–1095

    Article  CAS  Google Scholar 

  20. Rodriguez-Larrea D, Bayley H (2013) Multistep protein unfolding during nanopore translocation. Nat Nanotechnol 2013(8):288–295

    Article  Google Scholar 

  21. Rosen CB, Rodriguez-Larrea D, Bayley H (2014) Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat Biotechnol 2014(32):179–181

    Article  Google Scholar 

  22. Nivala J, Marks DB, Akeson M (2013) Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat Biotechnol 31:247–250

    Google Scholar 

  23. Soskine M, Biesemans A, Moeyaert B, Cheley S, Bayley H, Maglia G (2012) An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett 12:4895–4900

    Google Scholar 

  24. Mohammad MM, Iyer R, Howard KR, McPike MP, Borer PN, Movileanu L (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134:9521–9531

    Article  CAS  Google Scholar 

  25. Brown CG, Clarke J (2016) Nanopore development at Oxford Nanopore. Nat Biotechnol 34:810–811

    Google Scholar 

  26. Soskine M, Biesemans A, Maglia G (2015) Single-molecule analyte recognition with ClyA nanopores equipped with internal protein adaptors. J Am Chem Soc 137:5793–5797

    Article  CAS  Google Scholar 

  27. Willems K, Van Meervelt V, Wloka C, Maglia G (2017) Single-molecule nanopore enzymology. Philos Trans R Soc Lond Ser B Biol Sci 372:1726

    Article  Google Scholar 

  28. Ma H, Deacon S, Horiuchi K (2008) The challenge of selecting protein kinase assays for lead discovery optimization. Expert Opin Drug Discov 3:607–621

    Article  CAS  Google Scholar 

  29. Xie H, Braha O, Gu LQ, Cheley S, Bayley H (2005) Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem Biol 12:109–120

    Google Scholar 

  30. Cheley S, Xie H, Bayley H (2006) A genetically encoded pore for the stochastic detection of a protein kinase. ChemBioChem 7:1923–1927

    Google Scholar 

  31. Harrington L, Cheley S, Alexander LT, Knapp S, Bayley H (2013) Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Proc Natl Acad Sci U S A 110:E4417–E4426

    Google Scholar 

  32. Harrington L, Alexander LT, Knapp S, Bayley H (2019) Single-molecule protein phosphorylation and dephosphorylation by nanopore enzymology. ACS Nano 13:633–641

    Article  CAS  Google Scholar 

  33. Harrington L, Alexander LT, Knapp S, Bayley H (2015) Pim kinase inhibitors evaluated with a single-molecule engineered nanopore sensor. Angew Chem Int Ed Engl 54:8154–8159

    Article  CAS  Google Scholar 

  34. Maglia G, Heron AJ, Stoddart D, Japrung D, Bayley H (2010) Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol 475:591–623

    Article  CAS  Google Scholar 

  35. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69:3561–3566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health and Oxford Nanopore Technologies. L.H. was supported in part by a Biotechnology and Biological Sciences Research Council doctoral training grant. S.K. and L.T.A. are supported by the Structural Genomics Consortium, a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA Darmstadt Germany, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome [106169/ZZ14/Z].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Harrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harrington, L., Alexander, L.T., Knapp, S., Bayley, H. (2021). Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules. In: Fahie, M.A. (eds) Nanopore Technology. Methods in Molecular Biology, vol 2186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0806-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0806-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0805-0

  • Online ISBN: 978-1-0716-0806-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics