Skip to main content

Generation of Random luxCDABE Transcriptional Fusions in the Genome of Salmonella enterica

  • Protocol
  • First Online:
Salmonella

Abstract

The luxCDABE operon of Photorhabdus luminescens can be used as a bioluminescent reporter to measure gene transcription nondestructively. Here we describe protocols to (1) generate random transcriptional fusions of the lux operon to genes of the Salmonella genome, (2) screen for specific fusions with constitutive expression, Salmonella pathogenicity island 1-related expression, or Salmonella pathogenicity island 2-related expression, and (3) determine the site of luxCDABE integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman ML, Beckwith J (1979) Fusions of the lac operon to the transfer RNA gene tyrT of Escherichia coli. J Mol Biol 130:285–301

    Article  CAS  Google Scholar 

  2. Close TJ, Rodriguez RL (1982) Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements. Gene 20:305–316

    Article  CAS  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  4. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230. https://doi.org/10.1146/annurev.cellbio.14.1.197

    Article  CAS  PubMed  Google Scholar 

  5. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9–23. https://doi.org/10.1162/153535004773861688

    Article  CAS  Google Scholar 

  6. Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU (2011) Bacterial luciferase reporters: the Swiss army knife of molecular biology. Bioeng Bugs 2:8–16. https://doi.org/10.4161/bbug.2.1.13566

    Article  PubMed  Google Scholar 

  7. Meighen EA, Szittner RB (1992) Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. J Bacteriol 174:5371–5381

    Article  CAS  Google Scholar 

  8. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    Article  CAS  Google Scholar 

  9. Winson MK, Swift S, Hill PJ et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202. https://doi.org/10.1016/S0378-1097(98)00173-6

    Article  CAS  PubMed  Google Scholar 

  10. Ramos-Morales F (2012) Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012:1–36. https://doi.org/10.5402/2012/787934

    Article  CAS  Google Scholar 

  11. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791. https://doi.org/10.1038/nbt1183-784

    Article  CAS  Google Scholar 

  12. Edwards RA, Helm RA, Maloy SR (1999) Increasing DNA transfer efficiency by temporary inactivation of host restriction. Biotechniques 26:892–4, 896, 898 passim

    Google Scholar 

  13. Mojica-A T, Middleton RB (1971) Fertility of Salmonella typhimurium crosses with Escherichia coli. J Bacteriol 108:1161–1167

    Article  CAS  Google Scholar 

  14. Chun KT, Edenberg HJ, Kelley MR, Goebl MG (1997) Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast 13:233–240. https://doi.org/10.1002/(SICI)1097-0061(19970315)13:3<233::AID-YEA88>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the laboratory is supported by grants SAF2016-75365-R from the Spanish Ministry of Science and Innovation and the European Regional Development Fund, and PID2019-106132RB-I00 from the Spanish Ministry of Science and Innovation. J.B.-B. was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 842629. We are grateful to Anja Wiechmann and Paul Williams (University of Nottingham) for the gift of plasmid pUTmini-Tn5luxCDABE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ramos-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de la Rosa-Altura, J.J. et al. (2021). Generation of Random luxCDABE Transcriptional Fusions in the Genome of Salmonella enterica. In: Schatten, H. (eds) Salmonella. Methods in Molecular Biology, vol 2182. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0791-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0791-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0790-9

  • Online ISBN: 978-1-0716-0791-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics