Skip to main content

Quantitative Analysis of Adenosine-to-Inosine RNA Editing

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

The conversion of adenosine to inosine (A to I) by RNA editing represents a common posttranscriptional mechanism for diversification of both the transcriptome and proteome, and is a part of the cellular response for innate immune tolerance. Due to its preferential base-pairing with cytosine (C), inosine (I) is recognized as guanosine (G) by reverse transcriptase, as well as the cellular splicing and translation machinery. A-to-I editing events appear as A-G discrepancies between genomic DNA and cDNA sequences. Molecular analyses of RNA editing have leveraged these nucleoside differences to quantify RNA editing in ensemble populations of RNA transcripts and within individual cDNAs using high-throughput sequencing or Sanger sequencing-derived analysis of electropherogram peak heights. Here, we briefly review and compare these methods of RNA editing quantification, as well as provide experimental protocols by which such analyses may be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellaker C, Vesely C, Ponting CP, McLaughlin PJ, Jantsch MF, Dorin J, Adams IR, Scadden AD, Ohman M, Keegan LP, O'Connell MA (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9(4):1482–1494. https://doi.org/10.1016/j.celrep.2014.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenthal JJ (2015) The emerging role of RNA editing in plasticity. J Exp Biol 218(Pt 12):1812–1821. https://doi.org/10.1242/jeb.119065

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67(1):11–19

    Article  CAS  Google Scholar 

  4. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387(6630):303–308. https://doi.org/10.1038/387303a0

    Article  CAS  PubMed  Google Scholar 

  5. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  6. Morabito MV, Ulbricht RJ, O'Neil RT, Airey DC, Lu P, Zhang B, Wang L, Emeson RB (2010) High-throughput multiplexed transcript analysis yields enhanced resolution of 5-hydroxytryptamine 2C receptor mRNA editing profiles. Mol Pharmacol 77(6):895–902. https://doi.org/10.1124/mol.109.061903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang R, Li X, Ramaswami G, Smith KS, Turecki G, Montgomery SB, Li JB (2014) Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing. Nat Methods 11(1):51–54. https://doi.org/10.1038/nmeth.2736

    Article  CAS  PubMed  Google Scholar 

  8. Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324(5931):1210–1213. https://doi.org/10.1126/science.1170995

    Article  CAS  PubMed  Google Scholar 

  9. Hood JL, Morabito MV, Martinez CR 3rd, Gilbert JA, Ferrick EA, Ayers GD, Chappell JD, Dermody TS, Emeson RB (2014) Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions. Mol Cell Neurosci 61:97–109. https://doi.org/10.1016/j.mcn.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  10. Jinnah H, Ulbricht RJ (2019) Using mouse models to unlock the secrets of non-synonymous RNA editing. Methods 156:40–45. https://doi.org/10.1016/j.ymeth.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  11. Porath HT, Carmi S, Levanon EY (2014) A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun 5:4726. https://doi.org/10.1038/ncomms5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diroma MA, Ciaccia L, Pesole G, Picardi E (2019) Elucidating the editome: bioinformatics approaches for RNA editing detection. Brief Bioinform 20(2):436–447. https://doi.org/10.1093/bib/bbx129

    Article  CAS  PubMed  Google Scholar 

  13. Eggington JM, Greene T, Bass BL (2011) Predicting sites of ADAR editing in double-stranded RNA. Nat Commun 2:319. https://doi.org/10.1038/ncomms1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jepson JE, Reenan RA (2007) Genetic approaches to studying adenosine-to-inosine RNA editing. Methods Enzymol 424:265–287. https://doi.org/10.1016/S0076-6879(07)24012-1

    Article  CAS  PubMed  Google Scholar 

  15. Carr IM, Robinson JI, Dimitriou R, Markham AF, Morgan AW, Bonthron DT (2009) Inferring relative proportions of DNA variants from sequencing electropherograms. Bioinformatics 25(24):3244–3250. https://doi.org/10.1093/bioinformatics/btp583

    Article  CAS  PubMed  Google Scholar 

  16. Shen W, Le S, Li Y, Hu F (2016) SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One 11(10):e0163962. https://doi.org/10.1371/journal.pone.0163962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Droop AP (2016) fqtools: an efficient software suite for modern FASTQ file manipulation. Bioinformatics 32(12):1883–1884. https://doi.org/10.1093/bioinformatics/btw088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Song Y, Shi X, Liu J, Xiong S, Chen W, Fu Q, Huang Z, Gu N, Zhang R (2018) The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res 28(1):132–143. https://doi.org/10.1101/gr.224386.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Joel G. Hardman and Mary K. Parr Endowed Chair in Pharmacology, NIH/NIDDK (R01 DK119508), and Vanderbilt Technologies for Advanced Genomics [VANTAGE, Vanderbilt Ingram Cancer Center (P30 CA68485), the Vanderbilt Vision Center (P30 EY08126), and NIH/NCRR (G20 RR030956)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald B. Emeson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malik, T.N., Cartailler, JP., Emeson, R.B. (2021). Quantitative Analysis of Adenosine-to-Inosine RNA Editing. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics