Skip to main content

Proteome Diversification by RNA Editing

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

RNA editing is an RNA modification that alters the RNA sequence relative to its genomic blueprint. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Editing of a protein-coding region within the RNA molecule may result in non-synonymous substitutions, leading to a modified protein product. These editing sites, also known as “recoding” sites, contribute to the complexity and diversification of the proteome. Recent computational transcriptomic studies have identified thousands of recoding sites in multiple species, many of which are conserved within (but not usually across) lineages and have functional and evolutionary importance. In this chapter we describe the recoding phenomenon across species, consider its potential utility for diversity and adaptation, and discuss its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846. https://doi.org/10.1146/annurev.biochem.71.110601.135501

    Article  CAS  PubMed  Google Scholar 

  2. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83–96. https://doi.org/10.1038/nrm.2015.4

    Article  CAS  PubMed  Google Scholar 

  3. Eisenberg E, Levanon EY (2018) A-to-I RNA editing—immune protector and transcriptome diversifier. Nat Rev Genet 19:473–490. https://doi.org/10.1038/s41576-018-0006-1

    Article  CAS  PubMed  Google Scholar 

  4. Lonsdale J, Thomas J, Salvatore M et al (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  5. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098. https://doi.org/10.1016/0092-8674(88)90253-X

    Article  CAS  PubMed  Google Scholar 

  6. Rebagliati MR, Melton DA (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48:599–605

    Article  CAS  PubMed  Google Scholar 

  7. Pestal K, Funk CC, Snyder JM et al (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43:933–944. https://doi.org/10.1016/j.immuni.2015.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liddicoat BJ, Piskol R, Chalk AM et al (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120. https://doi.org/10.1126/science.aac7049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mannion NM, Greenwood SM, Young R et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494. https://doi.org/10.1016/j.celrep.2014.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porath HT, Knisbacher BA, Eisenberg E, Levanon EY (2017) Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol 18:185. https://doi.org/10.1186/s13059-017-1315-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Porath HT, Schaffer A, Kaniewska P et al (2017) A-to-I RNA editing in the earliest-diverging eumetazoan phyla. Mol Biol Evol 34(8):1890–1901. https://doi.org/10.1093/molbev/msx125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neeman Y, Levanon EY, Jantsch MF, Eisenberg E (2006) RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12:1802–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinto Y, Buchumenski I, Levanon EY, Eisenberg E (2017) Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res 46(1):71–82. https://doi.org/10.1093/nar/gkx1176

    Article  CAS  PubMed Central  Google Scholar 

  14. Kawahara Y, Zinshteyn B, Sethupathy P et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140. https://doi.org/10.1126/science.1138050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Xu X, Yu S et al (2017) Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 27:1112–1125. https://doi.org/10.1101/gr.219741.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vesely C, Tauber S, Sedlazeck FJ et al (2012) Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Res 22:1468–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alon S, Mor E, Vigneault F (2012) Systematic identification of edited microRNAs in the human brain systematic identification of edited microRNAs in the human. Genome Res 22:1533–1540. https://doi.org/10.1101/gr.131573.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ivanov A, Memczak S, Wyler E et al (2014) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177. https://doi.org/10.1016/j.celrep.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  19. Basilio C, Wahba AJ, Lengyel P et al (1962) Synthetic polynucleotides and the amino acid code. Proc Natl Acad Sci U S A 48:613–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Licht K, Hartl M, Amman F et al (2019) Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47:3–14. https://doi.org/10.1093/nar/gky1163

    Article  CAS  PubMed  Google Scholar 

  21. Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80. https://doi.org/10.1038/19992

    Article  CAS  PubMed  Google Scholar 

  22. Lev-Maor G, Sorek R, Levanon EY et al (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29. https://doi.org/10.1186/gb-2007-8-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan MH, Li Q, Shanmugam R et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550:249–254. https://doi.org/10.1038/nature24041

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benne R, Van den Burg J, Brakenhoff JP et al (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826

    Article  CAS  PubMed  Google Scholar 

  25. Estévez AM, Simpson L (1999) Uridine insertion/deletion RNA editing in trypanosome mitochondria—a review. Gene 240:247–260

    Article  PubMed  Google Scholar 

  26. Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666. https://doi.org/10.1038/341662a0

    Article  CAS  PubMed  Google Scholar 

  27. Gualberto JM, Lamattina L, Bonnard G et al (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662. https://doi.org/10.1038/341660a0

    Article  CAS  PubMed  Google Scholar 

  28. Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634

    Article  CAS  PubMed  Google Scholar 

  29. Takenaka M, Verbitskiy D, Zehrmann A et al (2014) RNA editing in plant mitochondria—connecting RNA target sequences and acting proteins. Mitochondrion 19:191–197. https://doi.org/10.1016/j.mito.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  30. Chen SH, Habib G, Yang CY et al (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366

    Article  CAS  PubMed  Google Scholar 

  31. Rosenberg BR, Hamilton CE, Mwangi MM et al (2011) Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat Struct Mol Biol 18:230–236. https://doi.org/10.1038/nsmb.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schrider DR, Gout J-F, Hahn MW (2011) Very few RNA and DNA sequence differences in the human transcriptome. PLoS One 6:e25842. https://doi.org/10.1371/journal.pone.0025842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kleinman CL, Majewski J (2012) Comment on “Widespread RNA and DNA sequence differences in the human transcriptome”. Science 335:1302. https://doi.org/10.1126/science.1209658; author reply 1302. 335/6074/1302-c [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Eisenberg E, Li JB, Levanon EY (2010) Sequence based identification of RNA editing sites. RNA Biol 7:248–252. https://doi.org/10.4161/rna.7.2.11565

    Article  CAS  PubMed  Google Scholar 

  35. Pickrell JK, Gilad Y, Pritchard JK (2012) Comment on “Widespread RNA and DNA sequence differences in the human transcriptome”. Science 335:1302–1302. https://doi.org/10.1126/science.1210484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin W, Piskol R, Tan MH, Li JB (2012) Comment on “Widespread RNA and DNA sequence differences in the human transcriptome”. Science 335:1302–1302. https://doi.org/10.1126/science.1210624

    Article  CAS  PubMed  Google Scholar 

  37. Piskol R, Peng Z, Wang J, Li JB (2013) Lack of evidence for existence of noncanonical RNA editing. Nat Biotechnol 31:19–20. https://doi.org/10.1038/nbt.2472

    Article  CAS  PubMed  Google Scholar 

  38. Diroma MA, Ciaccia L, Pesole G, Picardi E (2017) Elucidating the editome: bioinformatics approaches for RNA editing detection. Brief Bioinform 20(2):436–447. https://doi.org/10.1093/bib/bbx129

    Article  CAS  Google Scholar 

  39. Levanon EY, Eisenberg E (2006) Algorithmic approaches for identification of RNA editing sites. Brief Funct Genom Proteom 5:43–45. https://doi.org/10.1093/bfgp/ell014

    Article  CAS  Google Scholar 

  40. Eisenberg E (2012) Bioinformatic approaches for identification of A-to-I editing sites. Curr Top Microbiol Immunol 353:145–162. https://doi.org/10.1007/82_2011_147

    Article  CAS  PubMed  Google Scholar 

  41. Ramaswami G, Li JB (2016) Identification of human RNA editing sites: a historical perspective. Methods 107:42–47. https://doi.org/10.1016/j.ymeth.2016.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramaswami G, Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42:D109–D113. https://doi.org/10.1093/nar/gkt996

    Article  CAS  PubMed  Google Scholar 

  43. Picardi E, D’Erchia AM, Lo Giudice C, Pesole G (2017) REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 45:D750–D757. https://doi.org/10.1093/nar/gkw767

    Article  CAS  PubMed  Google Scholar 

  44. Bazak L, Haviv A, Barak M et al (2014) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:365–376. https://doi.org/10.1101/gr.164749.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pinto Y, Cohen HY, Levanon EY (2014) Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 15:R5. https://doi.org/10.1186/gb-2014-15-1-r5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836. https://doi.org/10.1126/science.1086763

    Article  CAS  PubMed  Google Scholar 

  47. Levanon EY, Hallegger M, Kinar Y et al (2005) Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33:1162–1168. https://doi.org/10.1093/nar/gki239

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19. 0092-8674(91)90568-J [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713. https://doi.org/10.1126/science.7992055

    Article  CAS  PubMed  Google Scholar 

  50. Burns CM, Chu H, Rueter SM et al (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308. https://doi.org/10.1038/387303a0

    Article  CAS  PubMed  Google Scholar 

  51. Higuchi M, Single FN, Köhler M et al (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370. https://doi.org/10.1016/0092-8674(93)90622-W

    Article  CAS  PubMed  Google Scholar 

  52. Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13:279–283

    Article  CAS  PubMed  Google Scholar 

  53. Kwak S, Kawahara Y (2005) Deficient RNA editing of GluR2 and neuronal death in amyotrophic lateral sclerosis. J Mol Med 83:110–120. https://doi.org/10.1007/s00109-004-0599-z

    Article  CAS  PubMed  Google Scholar 

  54. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98:14687–14692. https://doi.org/10.1073/pnas.251531398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawahara Y, Ito K, Sun H et al (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801. https://doi.org/10.1038/427801a

    Article  CAS  PubMed  Google Scholar 

  56. Higuchi M, Maas S, Single FN et al (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81. https://doi.org/10.1038/35017558

    Article  CAS  PubMed  Google Scholar 

  57. Horsch M, Seeburg PH, Adler T et al (2011) Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J Biol Chem 286:18614–18622. https://doi.org/10.1074/jbc.M110.200881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marion S, Weiner DM, Caron MG (2004) RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J Biol Chem 279:2945–2954. https://doi.org/10.1074/jbc.M308742200

    Article  CAS  PubMed  Google Scholar 

  59. Wang Q, Khillan J, Gadue P, Nishikura K (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290:1765–1768. https://doi.org/10.1126/science.290.5497.1765

    Article  CAS  PubMed  Google Scholar 

  60. Wahlstedt H, Daniel C, Ensterö M, Öhman M (2009) Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 19(6):978–986. https://doi.org/10.1101/gr.089409.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khermesh K, Erchia AMD, Barak M et al (2016) Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA 22:1–13. https://doi.org/10.1261/rna.054627.115

    Article  CAS  Google Scholar 

  62. Zaidan H, Ramaswami G, Golumbic YN et al (2018) A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 19:28. https://doi.org/10.1186/s12864-017-4409-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Niswender CM, Copeland SC, Herrick-Davis K et al (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274:9472–9478. https://doi.org/10.1074/jbc.274.14.9472

    Article  CAS  PubMed  Google Scholar 

  64. Price RD, Weiner DM, Chang MS, Sanders-Bush E (2001) RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 276:44663–44668. https://doi.org/10.1074/jbc.M106745200

    Article  CAS  PubMed  Google Scholar 

  65. Kawahara Y, Grimberg A, Teegarden S et al (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28:12834–12844. 28/48/12834 [pii]\r10.1523/JNEUROSCI.3896-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Englander MT, Dulawa SC, Bhansali P, Schmauss C (2005) How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing. J Neurosci 25:648–651. https://doi.org/10.1523/JNEUROSCI.3895-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Iwamoto K, Bundo M, Kato T (2009) Serotonin receptor 2C and mental disorders: genetic, expression and RNA editing studies. RNA Biol 6:248–253

    Article  CAS  PubMed  Google Scholar 

  68. Clutterbuck DR, Leroy A, O’Connell MA, Semple CAM (2005) A bioinformatic screen for novel A-I RNA editing sites reveals recoding editing in BC10. Bioinformatics 21:2590–2595. https://doi.org/10.1093/bioinformatics/bti411

    Article  CAS  PubMed  Google Scholar 

  69. Kiran A, Baranov PV (2010) DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics 26:1772–1776. https://doi.org/10.1093/bioinformatics/btq285

    Article  CAS  PubMed  Google Scholar 

  70. Riedmann EM, Schopoff S, Hartner JC et al (2008) Specificity of ADAR-mediated RNA editing in newly identified targets specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14:1110–1118. https://doi.org/10.1261/rna.923308.In

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen L, Li Y, Lin CH et al (2013) Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 19:209–216. https://doi.org/10.1038/nm.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yeo J, Goodman RA, Schirle NT et al (2010) RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A 107:20715–20719. https://doi.org/10.1073/pnas.1009231107

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bhalla T, Rosenthal JJC, Holmgren M, Reenan R (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11:950–956. https://doi.org/10.1038/nsmb825

    Article  CAS  PubMed  Google Scholar 

  74. Daniel C, Wahlstedt H, Ohlson J et al (2011) Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type A (GABA(A)) receptor. J Biol Chem 286:2031–2040. https://doi.org/10.1074/jbc.M110.130096

    Article  CAS  PubMed  Google Scholar 

  75. Egebjerg J, Heinemann SF (1993) Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci U S A 90:755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sailer A, Swanson GT, Pérez-Otaño I et al (1999) Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J Neurosci 19:8757–8764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miyake K, Ohta T, Nakayama H et al (2016) CAPS1 RNA editing promotes dense Core vesicle exocytosis. Cell Rep 17:2004–2014. https://doi.org/10.1016/j.celrep.2016.10.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jain M, Mann TD, Stulić M et al (2018) RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J 37:e94813. https://doi.org/10.15252/embj.201694813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu G, Zhang J (2014) Human coding RNA editing is generally nonadaptive. Proc Natl Acad Sci U S A 111:3769–3774. https://doi.org/10.1073/pnas.1321745111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. St Laurent G, Tackett MR, Nechkin S et al (2013) Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat Struct Mol Biol 20:1333–1339. https://doi.org/10.1038/nsmb.2675

    Article  CAS  PubMed  Google Scholar 

  81. Yu Y, Zhou H, Kong Y et al (2016) The landscape of A-to-I RNA editome is shaped by both positive and purifying selection. PLoS Genet 12:e1006191. https://doi.org/10.1371/journal.pgen.1006191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duan Y, Dou S, Luo S et al (2017) Adaptation of A-to-I RNA editing in Drosophila. PLoS Genet 13:e1006648. https://doi.org/10.1371/journal.pgen.1006648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang R, Deng P, Jacobson D, Li JB (2017) Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing. PLoS Genet 13:e1006563. https://doi.org/10.1371/journal.pgen.1006563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keegan LP, McGurk L, Palavicini JP et al (2011) Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic Acids Res 39:7249–7262. https://doi.org/10.1093/nar/gkr423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102:437–449. https://doi.org/10.1016/S0092-8674(00)00049-0

    Article  CAS  PubMed  Google Scholar 

  86. Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing [In Process Citation]. RNA 6:1004–1018. https://doi.org/10.1017/S1355838200000248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alon S, Garrett SC, Levanon EY et al (2015) The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. Elife 4:e05198

    Article  PubMed Central  Google Scholar 

  88. Liscovitch-Brauer N, Alon S, Porath HT et al (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169:191–202.e11. https://doi.org/10.1016/j.cell.2017.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li I-C, Chen Y-C, Wang Y-Y et al (2014) Zebrafish Adar2 edits the Q/R site of AMPA receptor subunit gria2α transcript to ensure normal development of nervous system and cranial neural crest cells. PLoS One 9:e97133. https://doi.org/10.1371/journal.pone.0097133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pozo P, Hoopengardner B (2012) Identification and characterization of two novel RNA editing sites in grin1b transcripts of embryonic Danio rerio. Neural Plast 2012:1–7. https://doi.org/10.1155/2012/173728

    Article  CAS  Google Scholar 

  91. Sie CP, Maas S (2009) Conserved recoding RNA editing of vertebrate C1q-related factor C1QL1. FEBS Lett 583:1171–1174. https://doi.org/10.1016/j.febslet.2009.02.044

    Article  CAS  PubMed  Google Scholar 

  92. Shamay-Ramot A, Khermesh K, Porath HT et al (2015) Fmrp interacts with Adar and regulates RNA editing, synaptic density and locomotor activity in zebrafish. PLoS Genet 11:e1005702. https://doi.org/10.1371/journal.pgen.1005702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li Q, Wang Z, Lian J et al (2014) Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior. Nat Commun 5:4943. https://doi.org/10.1038/ncomms5943

    Article  CAS  PubMed  Google Scholar 

  94. Porath HT, Hazan E, Shpigler H et al (2019) RNA editing is abundant and correlates with task performance in a social bumblebee. Nat Commun 10:1605. https://doi.org/10.1038/s41467-019-09543-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gommans WM, Mullen SP, Maas S (2009) RNA editing: a driving force for adaptive evolution? BioEssays 31:1137–1145. https://doi.org/10.1002/bies.200900045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Terajima H, Yoshitane H, Ozaki H et al (2016) ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet 49:146–151. https://doi.org/10.1038/ng.3731

    Article  CAS  PubMed  Google Scholar 

  97. Robinson JE, Paluch J, Dickman DK, Joiner WJ (2016) ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat Commun 7:10512. https://doi.org/10.1038/ncomms10512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gallo A, Vukic D, Michalík D et al (2017) ADAR RNA editing in human disease; more to it than meets the I. Hum Genet 136:1265–1278. https://doi.org/10.1007/s00439-017-1837-0

    Article  CAS  PubMed  Google Scholar 

  99. Garrett S, Rosenthal JJC (2012) RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335:848–851. https://doi.org/10.1126/science.1212795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yablonovitch AL, Fu J, Li K et al (2017) Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimates. Nat Commun 8:1570. https://doi.org/10.1038/s41467-017-01658-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yablonovitch AL, Deng P, Jacobson D, Li JB (2017) The evolution and adaptation of A-to-I RNA editing. PLoS Genet 13:e1007064. https://doi.org/10.1371/journal.pgen.1007064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Greenberger S, Levanon EY, Paz-Yaacov N et al (2010) Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats. BMC Genomics 11:608. https://doi.org/10.1186/1471-2164-11-608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Picardi E, Manzari C, Mastropasqua F et al (2015) Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5:14941. https://doi.org/10.1038/srep14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oakes E, Anderson A, Cohen-Gadol A, Hundley HA (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 292:4326–4335. https://doi.org/10.1074/jbc.M117.779868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marcucci R, Brindle J, Paro S et al (2011) Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J 30:4211–4222. https://doi.org/10.1038/emboj.2011.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Behm M, Wahlstedt H, Widmark A et al (2017) Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci 130:745–753. https://doi.org/10.1242/jcs.200055

    Article  CAS  PubMed  Google Scholar 

  107. Garncarz W, Tariq A, Handl C et al (2013) A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol 10:192–204. https://doi.org/10.4161/rna.23208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Savva YA, Jepson JEC, Sahin A et al (2012) Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila. Nat Commun 3:790. https://doi.org/10.1038/ncomms1789

    Article  CAS  PubMed  Google Scholar 

  109. Rieder LE, Savva YA, Reyna MA et al (2015) Dynamic response of RNA editing to temperature in Drosophila. BMC Biol 13:1. https://doi.org/10.1186/s12915-014-0111-3

    Article  PubMed  PubMed Central  Google Scholar 

  110. Buchumenski I, Bartok O, Ashwal-Fluss R et al (2017) Dynamic hyper-editing underlies temperature adaptation in Drosophila. PLoS Genet 13:e1006931. https://doi.org/10.1371/journal.pgen.1006931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Garrett SC, Rosenthal JJC (2012) A role for A-to-I RNA editing in temperature adaptation. Physiology 27:362–369. https://doi.org/10.1152/physiol.00029.2012

    Article  CAS  PubMed  Google Scholar 

  112. Riemondy KA, Gillen AE, White EA et al (2018) Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. RNA 24:1481–1495. https://doi.org/10.1261/rna.066522.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Reenan RA (2005) Molecular determinants and guided evolution of species-specific RNA editing. Nature 434:409–413. https://doi.org/10.1038/nature03364

    Article  CAS  PubMed  Google Scholar 

  114. Rieder LE, Staber CJ, Hoopengardner B, Reenan RA (2013) Tertiary structural elements determine the extent and specificity of messenger RNA editing. Nat Commun 4:2232. https://doi.org/10.1038/ncomms3232

    Article  CAS  PubMed  Google Scholar 

  115. Gal-Mark N, Shallev L, Sweetat S et al (2017) Abnormalities in A-to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition. Sci Rep 7:43421. https://doi.org/10.1038/srep43421

    Article  PubMed  PubMed Central  Google Scholar 

  116. Picardi E, Horner DS, Pesole G (2017) Single-cell transcriptomics reveals specific RNA editing signatures in the human brain. RNA 23:860–865. https://doi.org/10.1261/rna.058271.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Daniel C, Silberberg G, Behm M, Ohman M (2014) Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15:R28. https://doi.org/10.1186/gb-2014-15-2-r28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sapiro AL, Deng P, Zhang R, Li JB (2015) Cis regulatory effects on A-to-I RNA editing in related drosophila species. Cell Rep 11:697–703. https://doi.org/10.1016/j.celrep.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kung SS, Chen YC, Lin WH et al (2001) Q/R RNA editing of the AMPA receptor subunit 2 (GRIA2) transcript evolves no later than the appearance of cartilaginous fishes. FEBS Lett 509:277–281

    Article  CAS  PubMed  Google Scholar 

  120. Sorek R, Lev-Maor G, Reznik M et al (2004) Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons. Mol Cell 14:221–231. https://doi.org/10.1016/S1097-2765(04)00181-9

    Article  CAS  PubMed  Google Scholar 

  121. Bazak L, Levanon EY, Eisenberg E (2014) Genome-wide analysis of Alu editability. Nucleic Acids Res 42:6876–6884. https://doi.org/10.1093/nar/gku414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dagan T, Sorek R, Sharon E et al (2004) AluGene: a database of Alu elements incorporated within protein-coding genes. Nucleic Acids Res 32:D489–D492. https://doi.org/10.1093/nar/gkh132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ramaswami G, Deng P, Zhang R et al (2015) Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nat Commun 6:8194. https://doi.org/10.1038/ncomms9194

    Article  CAS  PubMed  Google Scholar 

  124. Daniel C, Widmark A, Rigardt D, Öhman M (2017) Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome. Genome Biol 18:195. https://doi.org/10.1186/s13059-017-1324-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Daniel C, Venø MT, Ekdahl Y et al (2012) A distant cis acting intronic element induces site-selective RNA editing. Nucleic Acids Res 40:9876–9886. https://doi.org/10.1093/nar/gks691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morgantini C, Jager J, Li X et al (2019) Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat Metab 1:445–459. https://doi.org/10.1038/s42255-019-0044-9

    Article  CAS  PubMed  Google Scholar 

  127. Tian N, Wu X, Zhang Y, Jin Y (2008) A-to-I editing sites are a genomically encoded G: implications for the evolutionary significance and identification of novel editing sites. RNA 14:211–216. https://doi.org/10.1261/rna.797108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ohlson J, Pedersen JS, Haussler D, Ohman M (2007) Editing modifies the GABA(A) receptor subunit alpha3. RNA 13:698–703. https://doi.org/10.1261/rna.349107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Eisenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eisenberg, E. (2021). Proteome Diversification by RNA Editing. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics