Skip to main content

Lectin Affinity Chromatography: An Efficient Method to Purify Horse IgG3

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

Affinity chromatography is a separation method based on a specific binding interaction between an immobilized ligand and its binding partner. An important class of ligands for the effective separation and purification of biotechnologically important substances is lectins, a group of naturally occurring molecules widely found in plants that display a range of specificities to bind different sugars. As sugars are often added to proteins through the process of glycosylation, ∼1/3 of all genetically encoded proteins are glycosylated, numerous cognate pairs of lectins with glycosylation groups have been discovered. Their specific binding interactions have not only allowed the development of numerous methodological strategies involving immobilized lectins to isolate molecules of interests but also for understanding the intermolecular interactions and alterations in glycosylation during a diverse set of biological phenomena, including tumor cell metastasis, intracellular communication, and inflammation. In this chapter, we describe a basic procedure for the separation of horse antibody classes by affinity chromatography based on differences in their glycosylation patterns. This procedure has been utilized for the purification of horse IgG3 (hoIgG3) from other six Ig from equine sera in a single step by using an Artocarpus integrifolia Jacalin column. This class of antibody comprises the therapeutic fraction generated in equine for passive antibody therapy and can serve as a biomarker for patient hypersensitivity. During the course of developing the protocol, the affinity interaction constant between the huIgE-hypersensitive immunoglobulin and the purified hoIgG3 was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EDTA:

ethylenediaminetetraacetic acid

hoIgG3:

horse immunoglobulin G3

HPLC:

high-performance liquid chromatography

huIgE:

human immunoglobulin E

Ig:

immunoglobulin

IgE:

immunoglobulin E

IgG:

immunoglobulin G

PAGE:

polyacrylamide gel electrophoresis

PBS-NP40:

phosphate buffer of pH 7.3 containing 150 mM NaCl and 0.1% Nonidet P-40

SDS:

sodium dodecyl sulfate

References

  1. Sato S, Yanagida N, Ohtani K, Koike Y et al (2015) A review of biomarkers for predicting clinical reactivity to foods with a focus on specific immunoglobulin E antibodies. Curr Opin Allergy Clin Immunol 15:250–258

    Article  CAS  Google Scholar 

  2. Kankeu-Fonkoua L, Yee NS (2018) Molecular characterization of gastric carcinoma: therapeutic implications for biomarkers and targets. Biomedicine 9:E32

    Google Scholar 

  3. Benzaquen J, Marquette CH, Glaichenhaus N et al (2018) The biological rationale for immunotherapy in cancer. Rev Mal Respir 35:206–222

    Article  CAS  Google Scholar 

  4. Van Gasse AL, Sabato V, Bridts CH et al (2014) L'allergie au cannabis: bien plus qu'un voyage stupéfiant emerging allergens. Rev Fr Allergol 54:144

    Article  Google Scholar 

  5. Drak CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 1:24–37

    Article  CAS  Google Scholar 

  6. Welbeck K, Leonard P, Gilmartin N et al (2011) Generation of an anti-NAGase single-chain antibody and its application in a biosensor-based assay for the detection of NAGase in milk. J Immunol Methods 364:14–20

    Article  CAS  Google Scholar 

  7. Dijkers ECF, de Vries EGE, Kosterink JGW et al (2008) Immunoscintigraphy as a potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharm Des 14:3348–3362

    Article  CAS  Google Scholar 

  8. Subramanian A (2002) Immunoaffinity chromatography. Mol Biotechnol 20:41–47

    Article  CAS  Google Scholar 

  9. Lipman NS, Jackson LR, Trudel LJ et al (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46:258–268

    Article  CAS  Google Scholar 

  10. Ayyar BV, Aror S, Murphy C et al (2012) Affinity chromatography as a tool for antibody purification. Methods 56:116–129

    Article  CAS  Google Scholar 

  11. Grom M, Kozorog M, Caserman S et al (2018) Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): experiments and mechanistic transport, binding and equilibrium modeling. J Chromatogr B 1083:44–56

    Article  CAS  Google Scholar 

  12. Arora S, Ayyar BV, O'Kennedy R (2015) Affinity chromatography for antibody purification. Methods Mol Biol 1129:497–516

    Article  CAS  Google Scholar 

  13. De-Simone SG, Nascimento HJ, Prado I et al (2018) Purification of equine IgG3 by lectin affinity and an interaction analysis via microscale thermophoresis. Anal Biochem 561–562:27–31

    Article  CAS  Google Scholar 

  14. Theakston RDG, Warrell DA (1991) Antivenoms: a list of hyperimmune sera currently available for the treatment of envenoming by bites and stings. Toxicon 29:1419–1470

    Article  CAS  Google Scholar 

  15. Warrell DA (1996) Management of snakebite. In: Weatherall DJ, JGG L, Warrell DA (eds) Oxford Twbook of medicine, 3rd edn. Oxford University Press, Oxford, p 1135

    Google Scholar 

  16. Reddy PM, Nagaya H, Pascual HC et al (1978) Reappraisal of intracutaneous tests in the diagnosis of reagenic allergy. J Allergy Clin Immunol 61:36–41

    Article  CAS  Google Scholar 

  17. Sutherland SK, Lovering KE (1979) Antivenoms: use and adverse reactions over a 12-month period in Australia and Papua New Guinea. Med J Aust 2:671–674

    Article  CAS  Google Scholar 

  18. Malasit P, Warrell DA, Chanthavanich P et al (1986) Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. Br Med J 292:17–20

    Article  CAS  Google Scholar 

  19. Morais VM, Massaldi H (2009) Snake antivenoms: adverse reaction and production technology. J Venom Anim Toxins Incl Trop Dis 15:2–18

    Article  CAS  Google Scholar 

  20. Chen JC, Bullard MJ, Chiu TF et al (2000) Risk of immediate effects from F(ab')2 bivalent antivenin in Taiwan. Wilderness Environ Med 11:163–167

    Article  CAS  Google Scholar 

  21. Dart RC, McNally J (2000) Efficacy, safety, and use of snake antivenoms in the United States. Ann Emerg Med 37:181–188

    Article  Google Scholar 

  22. LoVecchio F, Klemens J, Roundy EB et al (2003) Serum sickness following administration of antivenin (Crotalidae) polyvalent in 181 cases of presumed rattlesnake envenomation. Wilderness Environ Med 14:220–221

    Article  Google Scholar 

  23. Ledin A, Arnemo JM, Liberg O, Hellman L (2008) High plasma IgE levels within the Scandinavian wolf population, and its implications for mammalian IgE homeostasis. Mol Immunol 45:1976

    Article  CAS  Google Scholar 

  24. Thiansookon A, Rojnuckarin P (2008) Low incidence of early reactions to horse-derived F(ab'2) antivenom for snakebites in Thailand. Acta Trop 105:203

    Article  CAS  Google Scholar 

  25. León G, Herrera M, Segura A, Villalta M, Vargas M, Gutiérrez JM (2013) Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 76:63

    Article  CAS  Google Scholar 

  26. Aj H (1948) The purification of antitoxic plasmas by enzyme treatment and heat denaturation. Biochem J 42:390

    Article  Google Scholar 

  27. Rojas G, Jiménez JM, Gutierrez JM (1994) Caprylic acid fractionation of hyperimmune horse plasma: description of a single procedure for antivenom production. Toxicon 32:351

    Article  CAS  Google Scholar 

  28. Raweerith R, Ratanabanangkoon K (2003) Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography. J Immunol Methods 282:63

    Article  CAS  Google Scholar 

  29. Ayyar BV, Arora S, Murphy C, O'Kennedy R (2012) Affinity chromatography as a tool for antibody purification. Methods 56:116

    Article  CAS  Google Scholar 

  30. Lewis MJ, Wagner B, Woof JM (2008) The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies. Mol Immunol 45:818

    Article  CAS  Google Scholar 

  31. De-Simone SG, Gomes LP, Gemal A, Quirino FS, Provance-Jr DW (2013) Determination of a linear B-cell epitope in equine IgG for improved detection in therapeutic preparations. J Biotechnol Lett 4:84

    CAS  Google Scholar 

  32. De-Simone SG, Napoleão-Pêgo P, Teixeira-Pinto LAL, Melgarejo AR, Aguiar AS, Provance-Jr DW (2014) IgE and IgG epitope mapping by microarray peptide-immunoassay reveal the importance and diversity of the immune response to the IgG3 equine immunoglobulin. Toxicon 78:83

    Article  CAS  Google Scholar 

  33. Prado LC, Souza ALA, Rj C, Provance-Jr DW, De-Simone SG (2017) Ultrasensitive and rapid immuno-detection of human IgE anti-therapeutic horse sera using an electrochemical immunosensor. Anal Biochem 538:13

    Article  CAS  Google Scholar 

  34. De-Simone SG, Souza ALA, Melgarejo AR, Aguiar AS, Provance-Jr DW (2017) Development of elisa assay to detect specific human IgE anti-therapeutic horse sera. Toxicon 138:37

    Article  CAS  Google Scholar 

  35. Breathnach CC, Sturgill-Wright T, Stiltner JL, Adams AA, Lunn DP, Horohov DW (2016) Foals are interferon gamma-deficient at birth. Vet Immunol Immunopathol 112:199

    Article  CAS  Google Scholar 

  36. Kydd JH, Townsend HG, Hannant D (2006) The equine immune response to equine herpesvirus-1: the virus and its vaccines. Vet Immunol Immunopathol 111:15

    Article  CAS  Google Scholar 

  37. Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477–486

    Article  CAS  Google Scholar 

  38. De-Simone SG, Santos R, Araujo MF, Pinho RT (1994) Preparative isolation of the lectin jacalin by anion-exchange high-performance liquid chromatography. J Chromatogr A 68:357

    Article  Google Scholar 

  39. Robertson ER, Kennedy JF (1996) Glycoproteins: a consideration of the potential problems and their solutions with respect to purification and characterization. Bioseparation 6:1

    CAS  Google Scholar 

  40. Peng Z, Arthur G, Simons FE, Becker AB (2013) Binding of dog immunoglobulins G, A, M, and E to concanavalin A. Vet Immunol Immunopathol 36:83

    Article  Google Scholar 

  41. Kabir S, Ahmed ISA, Daar AS (1995) The binding of jacalin with rabbit immunoglobulin G. Immunol Invest 25:725

    Article  Google Scholar 

  42. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680

    Article  CAS  Google Scholar 

  43. Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl 49:2238

    Article  CAS  Google Scholar 

  44. Tachibana K, Nakamura S, Wang H, Iwasaki H, Tachibana K, Maebara K et al (2006) Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography. Glycobiology 16:46

    Article  CAS  Google Scholar 

  45. Sastry MV, Banarjee P, Patanjali SR, Swamy MJ, Swarnalatha GV (1986) A. Surolia, analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-DGal(1–3)D-GalNAc). J Biol Chem 261:11726

    Article  CAS  Google Scholar 

  46. Ahmed JH, Chatterjee BP (1989) Further characterization and immunochemical studies on the carbohydrate specificity of jackfruit (Artocarpus integrifolia) lectin. J Biol Chem 264:9365

    Article  CAS  Google Scholar 

  47. Jeyaprakash AA, Katiyar S, Swaminathan CP, Sekar K, Surolia A, Vijayan M (2003) Structural basis of the carbohydrate specificities of Jacalin: an X-ray and modeling study. J Mol Biol 332:217

    Article  CAS  Google Scholar 

  48. Wu AM, Wu JH, Lin LH, Liu JH (2003) Binding profile of Artocarpus integrifolia agglutinin (Jacalin). Life Sci 72:2285

    Article  CAS  Google Scholar 

  49. De-Simone SG, Netto CC, Silva-Jr FP (2006) Simple affinity chromatographic procedure to purify beta-galactoside binding lectins. J Chromatogr B Analyt Technol Biomed Life Sci 838:135

    Article  CAS  Google Scholar 

  50. De-Simone SG, Correa-Netto C, Antunes OA, De-Alencastro RB, Silva-Jr FP (2005) Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. J Chromatogr B Analyt Technol Biomed Life Sci 822:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel Maturana for assistance in the experiments with thermophoresis along with V.G. Mendes and K. Felisbino for support with technical laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore G. De-Simone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De-Simone, S.G., Provance, D.W. (2021). Lectin Affinity Chromatography: An Efficient Method to Purify Horse IgG3. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics