Skip to main content

Live-Cell Imaging and Analysis of Nuclear Body Mobility

  • Protocol
  • First Online:
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2175))

Abstract

The cell nucleus contains different domains and nuclear bodies, whose position relative to each other inside the nucleus can vary depending on the physiological state of the cell. Changes in the three-dimensional organization are associated with the mobility of individual components of the nucleus. In this chapter, we present a protocol for live-cell imaging and analysis of nuclear body mobility. Unlike other similar protocols, our image analysis pipeline includes non-rigid compensation for global motion of the nucleus before particle tracking and trajectory analysis, leading to precise detection of intranuclear movements. The protocol described can be easily adapted to work with most cell lines and nuclear bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dundr M (2012) Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 24:415–422. https://doi.org/10.1016/j.ceb.2012.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iarovaia OV, Minina EP, Sheval EV et al (2019) Nucleolus: a central hub for nuclear functions. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2019.04.003

  3. Arifulin EA, Musinova YR, Vassetzky YS et al (2018) Mobility of nuclear components and genome functioning. Biochemistry (Mosc) 83(3):690–700. https://doi.org/10.1134/S0006297918060068

    Article  CAS  Google Scholar 

  4. Zatsepina OV, Dudnic OA, Todorov IT et al (1997) Experimental induction of prenucleolar bodies (PNBs) in interphase cells: interphase PNBs show similar characteristics as those typically observed at telophase of mitosis in untreated cells. Chromosoma 105:418–430

    Article  CAS  Google Scholar 

  5. Musinova YR, Lisitsyna OM, Golyshev SA et al (2011) Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochim Biophys Acta 1813:27–38. https://doi.org/10.1016/j.bbamcr.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  6. Musinova YR, Kananykhina EY, Potashnikova DM et al (2015) A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. Biochim Biophys Acta 1853:101–110. https://doi.org/10.1016/j.bbamcr.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  7. Musinova YR, Lisitsyna OM, Sorokin DV et al (2016) RNA-dependent disassembly of nuclear bodies. J Cell Sci 129:4509–4520. https://doi.org/10.1242/jcs.189142

    Article  CAS  PubMed  Google Scholar 

  8. Pellar GJ, DiMario PJ (2003) Deletion and site-specific mutagenesis of nucleolin’s carboxy GAR domain. Chromosoma 111:461–469. https://doi.org/10.1007/s00412-003-0231-y

    Article  CAS  PubMed  Google Scholar 

  9. Sorokin DV, Peterlik I, Tektonidis M et al (2018) Non-rigid contour-based registration of cell nuclei in 2-D live cell microscopy images using a dynamic elasticity model. IEEE Trans Med Imaging 37:173–184. https://doi.org/10.1109/TMI.2017.2734169

    Article  PubMed  Google Scholar 

  10. Arifulin EA, Sorokin DV, Tvorogova AV et al (2018) Heterochromatin restricts the mobility of nuclear bodies. Chromosoma 127:529–537. https://doi.org/10.1007/s00412-018-0683-8

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Budhu A, Forgues M et al (2005) Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7:823–830. https://doi.org/10.1038/ncb1282

    Article  CAS  PubMed  Google Scholar 

  12. Chenouard N, Bloch I, Olivo-Marin J-C (2013) Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans Pattern Anal Mach Intell 35:2736–3750. https://doi.org/10.1109/TPAMI.2013.97

    Article  PubMed  Google Scholar 

  13. Foltánková V, Matula P, Sorokin D et al (2013) Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions. Microsc Microanal 19(2):360–369. https://doi.org/10.1017/S1431927612014353

    Article  CAS  PubMed  Google Scholar 

  14. Daumas F, Destainville N, Millot C et al (2003) Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 84:356–366. https://doi.org/10.1016/S0006-3495(03)74856-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys 82:041914. https://doi.org/10.1103/PhysRevE.82.041914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. X.W. Wang for the GFP-NPM WT-expressing plasmid. This work was supported by the Russian Science Foundation (17-11-01279 to DVS for image analysis) and the Russian Foundation for Basic Research (project 18-54-16002 to EVS for cell preparation and microscopy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yegor S. Vassetzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sorokin, D.V., Arifulin, E.A., Vassetzky, Y.S., Sheval, E.V. (2020). Live-Cell Imaging and Analysis of Nuclear Body Mobility. In: Hancock, R. (eds) The Nucleus . Methods in Molecular Biology, vol 2175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0763-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0763-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0762-6

  • Online ISBN: 978-1-0716-0763-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics