Skip to main content

Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation

  • Protocol
  • First Online:
Photoswitching Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2173))

Abstract

cAMP is a crucial mediator of multiple cell signaling pathways. This cyclic nucleotide requires strict spatiotemporal control for effective function. Light-activated proteins have become a powerful tool to study signaling kinetics due to having quick on/off rates and minimal off-target effects. The photoactivated adenylyl cyclase from Beggiatoa (bPAC) produces cAMP rapidly upon stimulation with blue light. However, light delivery is not always feasible, especially in vivo. Hence, we created a luminescence-activated cyclase by fusing bPAC with nanoluciferase (nLuc) to allow chemical activation of cAMP activity. This dual-activated adenylyl cyclase can be stimulated using short bursts of light or long-term chemical activation with furimazine and other related luciferins. Together these can be used to mimic transient, chronic, and oscillating patterns of cAMP signaling. Moreover, when coupled to compartment-specific targeting domains, these reagents provide a new powerful tool for cAMP spatiotemporal dynamic studies. Here, we describe detailed methods for working with bPAC-nLuc in mammalian cells, stimulating cAMP production with light and luciferins, and measuring total cAMP accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ledent C, Dumont JE, Vassart G, Parmentier M (1992) Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J 11(2):537–542

    Article  CAS  Google Scholar 

  2. Kosugi S, Shenker A, Mori T (1994) Constitutive activation of cyclic AMP but not phosphatidylinositol signaling caused by four mutations in the 6th transmembrane helix of the human thyrotropin receptor. FEBS Lett 356(2–3):291–294. https://doi.org/10.1016/0014-5793(94)01286-5

    Article  CAS  PubMed  Google Scholar 

  3. Gould TD, Manji HK (2002) Signaling networks in the pathophysiology and treatment of mood disorders. J Psychosom Res 53(2):687–697. https://doi.org/10.1016/S0022-3999(02)00426-9

    Article  PubMed  Google Scholar 

  4. Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M (2014) A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 171(24):5603–5623. https://doi.org/10.1111/bph.12882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gold MG, Gonen T, Scott JD (2013) Local cAMP signaling in disease at a glance. J Cell Sci 126(20):4537–4543. https://doi.org/10.1242/jcs.133751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6(4):427–438. https://doi.org/10.1038/nprot.2010.198

    Article  CAS  PubMed  Google Scholar 

  7. Koschinski A, Zaccolo M (2017) Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling. Sci Rep 7(1):14090. https://doi.org/10.1038/s41598-017-13021-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Terasaki WL, Brooker G (1977) Cardiac adenosine 3′:5′-monophosphate. Free and bound forms in the isolated rat atrium. J Biol Chem 252(3):1041–1050

    CAS  PubMed  Google Scholar 

  9. Iancu RV, Ramamurthy G, Warrier S, Nikolaev VO, Lohse MJ, Jones SW, Harvey RD (2008) Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 295(2):C414–C422. https://doi.org/10.1152/ajpcell.00038.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith FD, Esseltine JL, Nygren PJ, Veesler D, Byrne DP, Vonderach M, Strashnov I, Eyers CE, Eyers PA, Langeberg LK, Scott JD (2017) Local protein kinase A action proceeds through intact holoenzymes. Science 356(6344):1288–1293. https://doi.org/10.1126/science.aaj1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279(36):37215–37218. https://doi.org/10.1074/jbc.C400302200

    Article  CAS  PubMed  Google Scholar 

  12. Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2(1):25–29. https://doi.org/10.1038/71345

    Article  CAS  PubMed  Google Scholar 

  13. Cui W, Smith A, Darby-King A, Harley CW, McLean JH (2007) A temporal-specific and transient cAMP increase characterizes odorant classical conditioning. Learn Mem 14(3):126–133. https://doi.org/10.1101/lm.496007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vedel L, Brauner-Osborne H, Mathiesen JM (2015) A cAMP biosensor-based high-throughput screening assay for identification of Gs-coupled GPCR ligands and phosphodiesterase inhibitors. J Biomol Screen 20(7):849–857. https://doi.org/10.1177/1087057115580019

    Article  CAS  PubMed  Google Scholar 

  15. Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7(8):e1000172. https://doi.org/10.1371/journal.pbio.1000172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga J-P (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5(10):734–742. https://doi.org/10.1038/nchembio.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuna RS, Girada SB, Asalla S, Vallentyne J, Maddika S, Patterson JT, Smiley DL, DiMarchi RD, Mitra P (2013) Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic β-cells. Am J Physiol Endocrinol Metab 305(2):E161–E170. https://doi.org/10.1152/ajpendo.00551.2012

    Article  CAS  PubMed  Google Scholar 

  18. Merriam LA, Baran CN, Girard BM, Hardwick JC, May V, Parsons RL (2013) Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in Guinea pig cardiac neuron excitability. J Neurosci 33(10):4614–4622. https://doi.org/10.1523/jneurosci.4999-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Inda C, Dos Santos Claro PA, Bonfiglio JJ, Senin SA, Maccarrone G, Turck CW, Silberstein S (2016) Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol 214(2):181–195. https://doi.org/10.1083/jcb.201512075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pavlos NJ, Friedman PA (2017) GPCR signaling and trafficking: the long and short of it. Trends Endocrinol Metab 28(3):213–226. https://doi.org/10.1016/j.tem.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  21. Persani L, Lania A, Alberti L, Romoli R, Mantovani G, Filetti S, Spada A, Conti M (2000) Induction of specific phosphodiesterase isoforms by constitutive activation of the cAMP pathway in autonomous thyroid Adenomas1. J Clin Endocrinol Metabol 85(8):2872–2878. https://doi.org/10.1210/jcem.85.8.6712

    Article  CAS  Google Scholar 

  22. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325(24):1688–1695. https://doi.org/10.1056/nejm199112123252403

    Article  CAS  PubMed  Google Scholar 

  23. Boot AM, Lumbroso S, Verhoef-Post M, Richter-Unruh A, Looijenga LHJ, Funaro A, Beishuizen A, van Marle A, Drop SLS, Themmen APN (2011) Mutation analysis of the LH receptor gene in Leydig cell adenoma and hyperplasia and functional and biochemical studies of activating mutations of the LH receptor gene. J Clin Endocrinol Metab 96(7):E1197–E1205. https://doi.org/10.1210/jc.2010-3031

    Article  PubMed  PubMed Central  Google Scholar 

  24. Min KS, Liu X, Fabritz J, Jaquette J, Abell AN, Ascoli M (1998) Mutations that induce constitutive activation and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the Lutropin/Choriogonadotropin receptor. J Biol Chem 273(52):34911–34919

    Article  CAS  Google Scholar 

  25. Dyachok O, Isakov Y, Sagetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439(7074):349–352. https://doi.org/10.1038/nature04410

    Article  CAS  PubMed  Google Scholar 

  26. Tian G, Sagetorp J, Xu Y, Shuai H, Degerman E, Tengholm A (2012) Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion. J Cell Sci 125(Pt 21):5084–5095. https://doi.org/10.1242/jcs.107201

    Article  CAS  PubMed  Google Scholar 

  27. Vitalis EA, Costantin JL, Tsai P-S, Sakakibara H, Paruthiyil S, Iiri T, Martini J-F, Taga M, Choi ALH, Charles AC, Weiner RI (2000) Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proc Natl Acad Sci 97(4):1861–1866. https://doi.org/10.1073/pnas.040545197

    Article  CAS  PubMed  Google Scholar 

  28. Nicol X, Voyatzis S, Muzerelle A, Narboux-Neme N, Sudhof TC, Miles R, Gaspar P (2007) cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 10(3):340–347. https://doi.org/10.1038/nn1842

    Article  CAS  PubMed  Google Scholar 

  29. Haisenleder DJ, Yasin M, Marshall JC (1992) Enhanced effectiveness of pulsatile 3′,5′-cyclic adenosine monophosphate in stimulating prolactin and alpha-subunit gene expression. Endocrinology 131(6):3027–3033. https://doi.org/10.1210/endo.131.6.1280210

    Article  CAS  PubMed  Google Scholar 

  30. Brooker G (1973) Oscillation of cyclic adenosine monophosphate concentration during the myocardial contraction cycle. Science 182(4115):933–934

    Article  CAS  Google Scholar 

  31. Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116(2):147–161

    Article  CAS  Google Scholar 

  32. Ghigo A, Mika D (2019) cAMP/PKA signaling compartmentalization in cardiomyocytes: lessons from FRET-based biosensors. J Mol Cell Cardiol 131:112–121. https://doi.org/10.1016/j.yjmcc.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal SR, Gratwohl J, Cozad M, Yang PC, Clancy CE, Harvey RD (2018) Compartmentalized cAMP signaling associated with lipid raft and non-raft membrane domains in adult ventricular myocytes. Front Pharmacol 9:332. https://doi.org/10.3389/fphar.2018.00332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sassi Y, Abi-Gerges A, Fauconnier J, Mougenot N, Reiken S, Haghighi K, Kranias EG, Marks AR, Lacampagne A, Engelhardt S, Hatem SN, Lompre A-M, Hulot J-S (2012) Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB J 26(3):1009–1017. https://doi.org/10.1096/fj.11-194027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen C, Nakamura T, Koutalos Y (1999) Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys J 76(5):2861–2867

    Article  CAS  Google Scholar 

  36. Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. https://doi.org/10.1038/srep19577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR, Lohse MJ, Bauer WR (2017) Experimental and mathematical analysis of cAMP nanodomains. PLoS One 12(4):e0174856. https://doi.org/10.1371/journal.pone.0174856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richards M, Lomas O, Jalink K, Ford KL, Vaughan-Jones RD, Lefkimmiatis K, Swietach P (2016) Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 110(3):395–407. https://doi.org/10.1093/cvr/cvw080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M (2012) CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 125(Pt 5):1106–1117. https://doi.org/10.1242/jcs.089086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D (2016) cAMP signals in drosophila motor neurons are confined to single synaptic boutons. Cell Rep 17(5):1238–1246. https://doi.org/10.1016/j.celrep.2016.09.090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260(5105):222–226

    Article  CAS  Google Scholar 

  42. Efetova M, Petereit L, Rosiewicz K, Overend G, Haussig F, Hovemann BT, Cabrero P, Dow JA, Schwarzel M (2013) Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo. J Cell Sci 126(Pt 3):778–788. https://doi.org/10.1242/jcs.114140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jansen V, Alvarez L, Balbach M, Strunker T, Hegemann P, Kaupp UB, Wachten D (2015) Controlling fertilization and cAMP signaling in sperm by optogenetics. Elife 4. https://doi.org/10.7554/eLife.05161

  44. Tsvetanova NG, von Zastrow M (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10(12):1061–1065. https://doi.org/10.1038/nchembio.1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Averaimo S, Assali A, Ros O, Couvet S, Zagar Y, Genescu I, Rebsam A, Nicol X (2016) A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 7:12896. https://doi.org/10.1038/ncomms12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285(53):41501–41508. https://doi.org/10.1074/jbc.M110.177600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gartner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. https://doi.org/10.1074/jbc.M110.185496

    Article  CAS  PubMed  Google Scholar 

  48. Lindner R, Hartmann E, Tarnawski M, Winkler A, Frey D, Reinstein J, Meinhart A, Schlichting I (2017) Photoactivation mechanism of a bacterial light-regulated adenylyl cyclase. J Mol Biol 429(9):1336–1351. https://doi.org/10.1016/j.jmb.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  49. Berglund K, Birkner E, Augustine GJ, Hochgeschwender U (2013) Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. PLoS One 8(3):e59759. https://doi.org/10.1371/journal.pone.0059759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berglund K, Clissold K, Li HE, Wen L, Park SY, Gleixner J, Klein ME, Lu D, Barter JW, Rossi MA, Augustine GJ, Yin HH, Hochgeschwender U (2016) Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proc Natl Acad Sci U S A 113(3):E358–E367. https://doi.org/10.1073/pnas.1510899113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park SY, Song SH, Palmateer B, Pal A, Petersen ED, Shall GP, Welchko RM, Ibata K, Miyawaki A, Augustine GJ, Hochgeschwender U (2017) Novel luciferase-opsin combinations for improved luminopsins. J Neurosci Res. https://doi.org/10.1002/jnr.24152

  52. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. https://doi.org/10.1021/cb3002478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naim N, White AD, Reece JM, Wankhede M, Zhang X, Vilardaga JP, Altschuler DL (2018) Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis. J Biol Chem 294(4):1095–1103. https://doi.org/10.1074/jbc.AC118.004905

    Article  PubMed  PubMed Central  Google Scholar 

  54. Insel PA, Maguire ME, Gilman AG, Bourne HR, Coffino P, Melmon KL (1976) Beta adrenergic receptors and adenylate cyclase: products of separate genes? Mol Pharmacol 12(6):1062–1069

    CAS  PubMed  Google Scholar 

  55. Ross EM, Howlett AC, Ferguson KM, Gilman AG (1978) Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem 253(18):6401–6412

    CAS  PubMed  Google Scholar 

  56. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22(5):631–656

    Article  CAS  Google Scholar 

  57. Polstein LR, Gersbach CA (2014) Light-inducible gene regulation with engineered zinc finger proteins. Methods Mol Biol 1148:89–107. https://doi.org/10.1007/978-1-4939-0470-9_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dietler J, Stabel R, Möglich A (2019) Pulsatile illumination for photobiology and optogenetics. In: Deiters A (ed) Methods in enzymology, vol 624. Academic Press, Cambridge, Massachusetts, pp 227–248. https://doi.org/10.1016/bs.mie.2019.04.005

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institute of General Medical Sciences (NIGMS) of the US National Institutes of Health (NIH), and the Molecular Pharmacology Training Program of the University of Pittsburgh under grant Awards Number R01-GM09975, R01-GM130612, T32-GM00842419/20/21, and the Wistar Morris’s Cotswold Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Altschuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naim, N., Reece, J.M., Zhang, X., Altschuler, D.L. (2020). Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics