Skip to main content

Visualization of Stem Cell Niche by Fluorescence Lifetime Imaging Microscopy

  • Protocol
  • First Online:
Book cover Intestinal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2171))

Abstract

Fluorescence lifetime imaging microscopy (FLIM), enabling live quantitative multiparametric analyses, is an emerging bioimaging approach in tissue engineering and regenerative medicine. When combined with stem cell-derived intestinal organoid models, FLIM allows for tracing stem cells and monitoring of their proliferation, metabolic fluxes, and oxygenation. It is compatible with the use of live Matrigel-grown intestinal organoids produced from primary adult stem cells, crypts, and transgenic Lgr5-GFP mice. In this chapter we summarize available experimental protocols, imaging platforms (one- and two-photon excited FLIM, phosphorescence lifetime imaging microscopy (PLIM)) and provide the anticipated data for FLIM imaging of the live intestinal organoids, focusing on labeling of cell proliferation, its colocalization with the stem cell niche, measured local oxygenation, autofluorescence, and some other parameters. The protocol is illustrated with examples of multiparameter imaging, employing spectral and “time domain”–based separation of dyes, probes, and assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kretzschmar K, Clevers H (2016) Organoids: modeling development and the stem cell niche in a dish. Dev Cell 38(6):590–600

    Article  CAS  PubMed  Google Scholar 

  2. Dutta D, Clevers H (2017) Organoid culture systems to study host–pathogen interactions. Curr Opin Immunol 48:15–22. https://doi.org/10.1016/j.coi.2017.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246. https://doi.org/10.1038/ncb3312

    Article  CAS  PubMed  Google Scholar 

  4. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647. https://doi.org/10.1038/nrm3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  6. Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10(10):1474

    Article  CAS  PubMed  Google Scholar 

  7. Rodríguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M, Sacchetti A, Hornsveld M, Oost KC, Snippert HJ (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543(7645):424

    Article  PubMed  Google Scholar 

  8. Schell JC, Wisidagama DR, Bensard C, Zhao H, Wei P, Tanner J, Flores A, Mohlman J, Sorensen LK, Earl CS, Olson KA, Miao R, Waller TC, Delker D, Kanth P, Jiang L, DeBerardinis RJ, Bronner MP, Li DY, Cox JE, Christofk HR, Lowry WE, Thummel CS, Rutter J (2017) Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 19:1027. https://doi.org/10.1038/ncb3593. https://www.nature.com/articles/ncb3593 - supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490. https://doi.org/10.1038/nature11163. https://www.nature.com/articles/nature11163 - supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen PD, Currie PD (2018) In vivo imaging: shining a light on stem cells in the living animal. Development 145(7):dev150441

    Article  PubMed  Google Scholar 

  11. Teodori L, Crupi A, Costa A, Diaspro A, Melzer S, Tarnok A (2017) Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community. J Biophotonics 10(1):24–45

    Article  PubMed  Google Scholar 

  12. Conway JR, Warren SC, Timpson P (2017) Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 128:78–94

    Article  CAS  PubMed  Google Scholar 

  13. Sarder P, Maji D, Achilefu S (2015) Molecular probes for fluorescence lifetime imaging. Bioconjug Chem 26(6):963–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dmitriev RI (2017) Multi-parametric live cell microscopy of 3D tissue models, vol 1035. Springer, Cham

    Book  Google Scholar 

  15. Kalinina S, Breymayer J, Schäfer P, Calzia E, Shcheslavskiy V, Becker W, Rück A (2016) Correlative NAD (P) H-FLIM and oxygen sensing-PLIM for metabolic mapping. J Biophotonics 9(8):800–811

    Article  CAS  PubMed  Google Scholar 

  16. Lukina M, Orlova A, Shirmanova M, Shirokov D, Pavlikov A, Neubauer A, Studier H, Becker W, Zagaynova E, Yoshihara T (2017) Interrogation of metabolic and oxygen states of tumors with fiber-based luminescence lifetime spectroscopy. Opt Lett 42(4):731–734

    Article  CAS  PubMed  Google Scholar 

  17. Evers M, Salma N, Osseiran S, Casper M, Birngruber R, Evans CL, Manstein D (2018) Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM. Sci Rep 8(1):8757. https://doi.org/10.1038/s41598-018-27093-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Donnell N, Dmitriev RI (2017) Three-dimensional tissue models and available probes for multi-parametric live cell microscopy: a brief overview. In: Multi-parametric live cell microscopy of 3D tissue models. Springer, Cham, pp 49–67

    Chapter  Google Scholar 

  19. Baggaley E, Botchway SW, Haycock JW, Morris H, Sazanovich IV, Williams JG, Weinstein JA (2014) Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chem Sci 5(3):879–886

    Article  CAS  Google Scholar 

  20. Jenkins J, Dmitriev RI, Papkovsky DB (2015) Imaging cell and tissue O2 by TCSPC-PLIM. In: Advanced time-correlated single photon counting applications. Springer, Cham, pp 225–247

    Chapter  Google Scholar 

  21. Aigner D, Dmitriev RI, Borisov S, Papkovsky DB, Klimant I (2014) pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging. J Mater Chem B 2(39):6792–6801

    Article  CAS  PubMed  Google Scholar 

  22. Dmitriev RI, Borisov SM, Düssmann H, Sun S, Müller BJ, Prehn J, Baklaushev VP, Klimant I, Papkovsky DB (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models. ACS Nano 9(5):5275–5288

    Article  CAS  PubMed  Google Scholar 

  23. Zhdanov AV, Okkelman IA, Collins FW, Melgar S, Papkovsky DB (2015) A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochim Biophys Acta Bioenergetics 1847(10):1254–1266

    Article  CAS  Google Scholar 

  24. Meleshina AV, Dudenkova VV, Shirmanova MV, Shcheslavskiy VI, Becker W, Bystrova AS, Cherkasova EI, Zagaynova EV (2016) Probing metabolic states of differentiating stem cells using two-photon FLIM. Sci Rep 6:21853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB (2016) Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase. PLoS One 11(12):e0167385

    Article  PubMed  PubMed Central  Google Scholar 

  26. Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI (2017) Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation. Biomaterials 146:86–96

    Article  CAS  PubMed  Google Scholar 

  27. Jenkins J, Borisov SM, Papkovsky DB, Dmitriev RI (2016) Sulforhodamine nanothermometer for multiparametric fluorescence lifetime imaging microscopy. Anal Chem 88(21):10566–10572

    Article  CAS  PubMed  Google Scholar 

  28. Dmitriev RI, Zhdanov AV, Nolan YM, Papkovsky DB (2013) Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 34(37):9307–9317

    Article  CAS  PubMed  Google Scholar 

  29. Jenkins J, Dmitriev RI, Morten K, McDermott KW, Papkovsky DB (2015) Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture. Acta Biomater 16:126–135. https://doi.org/10.1016/j.actbio.2015.01.032

    Article  CAS  PubMed  Google Scholar 

  30. O’Donnell N, Okkelman IA, Timashev P, Gromovykh TI, Papkovsky DB, Dmitriev RI (2018) Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater 80:85–96

    Article  PubMed  Google Scholar 

  31. Sherrard A, Bishop P, Panagi M, Villagomez MB, Alibhai D, Kaidi A (2018) Streamlined histone-based fluorescence lifetime imaging microscopy (FLIM) for studying chromatin organisation. Biology Open: bio. 031476

    Google Scholar 

  32. Paredes JM, Giron MD, Ruedas-Rama MJ, Orte A, Crovetto L, Talavera EM, Salto R, Alvarez-Pez JM (2013) Real-time phosphate sensing in living cells using fluorescence lifetime imaging microscopy (FLIM). J Phys Chem B 117(27):8143–8149

    Article  CAS  PubMed  Google Scholar 

  33. Klarenbeek JB, Goedhart J, Hink MA, Gadella TW, Jalink K (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6(4):e19170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W, Goedhart J, Sánchez-Pérez M-I, Gadella TW, Simon R, Scheres B (2017) In vivo FRET–FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 548(7665):97

    Article  CAS  PubMed  Google Scholar 

  35. Okkelman IA, Papkovsky DB, Dmitriev RI (2019) Estimation of the Mitochondrial Membrane Potential Using Fluorescence Lifetime Imaging Microscopy. Cytometry Part A 0 (0). doi:10.1002/cyto.a.23886

    Google Scholar 

  36. Schützhold V, Fandrey J, Prost-Fingerle K (2018) Fluorescence lifetime imaging microscopy (FLIM) as a tool to investigate hypoxia-induced protein-protein interaction in living cells. In: Hypoxia. Springer, Cham, pp 45–53

    Chapter  Google Scholar 

  37. Anzilotti C, Swan DJ, Boisson B, Deobagkar-Lele M, Oliveira C, Chabosseau P, Engelhardt KR, Xu X, Chen R, Alvarez L, Berlinguer-Palmini R, Bull KR, Cawthorne E, Cribbs AP, Crockford TL, Dang TS, Fearn A, Fenech EJ, de Jong SJ, Lagerholm BC, Ma CS, Sims D, van den Berg B, Xu Y, Cant AJ, Kleiner G, Leahy TR, de la Morena MT, Puck JM, Shapiro RS, van der Burg M, Chapman JR, Christianson JC, Davies B, McGrath JA, Przyborski S, Santibanez Koref M, Tangye SG, Werner A, Rutter GA, Padilla-Parra S, Casanova J-L, Cornall RJ, Conley ME, Hambleton S (2019) An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat Immunol. https://doi.org/10.1038/s41590-018-0295-8

  38. Koren K, Mosshammer M, Scholz VV, Borisov SM, Holst G, Kühl M (2019) Luminescence lifetime imaging of chemical sensors – a comparison between time-domain and frequency-domain based camera systems. Anal Chem. https://doi.org/10.1021/acs.analchem.8b05869

  39. Dalfen I, Dmitriev RI, Holst G, Klimant I, Borisov SM (2019) Background-free fluorescence decay time sensing and imaging of pH with highly photostable diazaoxotriangulenium dyes. Anal Chem 91(1):808–816

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Holst G, Gratton E (2015) Modulated CMOS camera for fluorescence lifetime microscopy. Microsc Res Tech 78(12):1075–1081

    Article  PubMed  PubMed Central  Google Scholar 

  41. Erkkilä MT, Bauer B, Hecker-Denschlag N, Madera Medina MJ, Leitgeb RA, Unterhuber A, Gesperger J, Roetzer T, Hauger C, Drexler W (2019) Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: an ex vivo feasibility study. J Biophotonics 12(6):e201800378

    Article  PubMed  PubMed Central  Google Scholar 

  42. Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI (2017) Multi-parametric imaging of hypoxia and cell cycle in intestinal organoid culture. In: Dmitriev R (ed) Multi-parametric live cell microscopy of 3D tissue models, Advances in experimental medicine and biology, vol 1035. Springer, Cham, pp 85–103. https://doi.org/10.1007/978-3-319-67358-5_6

    Chapter  Google Scholar 

  43. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  CAS  PubMed  Google Scholar 

  44. Diaz G, Melis M, Batetta B, Angius F, Falchi AM (2008) Hydrophobic characterization of intracellular lipids in situ by Nile Red red/yellow emission ratio. Micron 39(7):819–824

    Article  CAS  PubMed  Google Scholar 

  45. Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JM, McDermott KW, Papkovsky DB (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2(6):853–866

    Article  CAS  PubMed  Google Scholar 

  46. Papkovsky DB, Dmitriev RI (2018) Imaging of oxygen and hypoxia in cell and tissue samples. Cell Mol Life Sci 75(16):2963–2980

    Article  CAS  PubMed  Google Scholar 

  47. Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003

    Article  CAS  PubMed  Google Scholar 

  48. Sato T, Vries RG, Snippert HJ, Van De Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ (2009) Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459(7244):262

    Article  CAS  PubMed  Google Scholar 

  49. Okkelman IA, Neto N, Papkovsky DB, Monaghan MG, Dmitriev RI (2020) A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biology 30:101420. https://doi.org/10.1016/j.redox.2019.101420

  50. Dmitriev RI, Borisov SM, Jenkins J, Papkovsky DB (2015) Multi-parametric imaging of tumor spheroids with ultra-bright and tunable nanoparticle O2 probes. In: Imaging, manipulation, and analysis of biomolecules, cells, and tissues XIII, 2015. International Society for Optics and Photonics, p 932806

    Google Scholar 

  51. Kuimova MK (2012) Mapping viscosity in cells using molecular rotors. Phys Chem Chem Phys 14(37):12671–12686

    Article  CAS  PubMed  Google Scholar 

  52. Müller BJ, Zhdanov AV, Borisov SM, Foley T, Okkelman IA, Tsytsarev V, Tang Q, Erzurumlu RS, Chen Y, Zhang H (2018) Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. Adv Funct Mater 28(9):1704598

    Article  Google Scholar 

  53. Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW (2017) Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdiscip Rev Dev Biol 6(2):e260

    Article  Google Scholar 

  54. Han S-H, Shim S, Kim M-J, Shin H-Y, Jang W-S, Lee S-J, Jin Y-W, Lee S-S, Lee SB, Park S (2017) Long-term culture-induced phenotypic difference and efficient cryopreservation of small intestinal organoids by treatment timing of Rho kinase inhibitor. World J Gastroenterol 23(6):964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation Ireland grant 12/RC/2276 (D.B.P., I.A.O.) and by the Agilent University Research Program (ACT-UR) No. 4225 (R.I.D.). We thank Dr. H. Glauner, Dr. L. Alvarez and team at the Leica training Centre (Mannheim, Germany) for support with demonstration of Leica SP8 Falcon systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan I. Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okkelman, I.A., Puschhof, J., Papkovsky, D.B., Dmitriev, R.I. (2020). Visualization of Stem Cell Niche by Fluorescence Lifetime Imaging Microscopy. In: Ordóñez-Morán, P. (eds) Intestinal Stem Cells. Methods in Molecular Biology, vol 2171. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0747-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0747-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0746-6

  • Online ISBN: 978-1-0716-0747-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics