Skip to main content

Functional Characterization of SLC Transporters Using Solid Supported Membranes

  • Protocol
  • First Online:
Biophysics of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2168))

Abstract

Here, we present a protocol for the functional characterization of the H+-coupled human peptide transporter PepT1 and sufficient notes to transfer the protocol to the Na+-coupled sugar transporter SGLT1, the organic cation transporter OCT2, the Na+/Ca2+ exchanger NCX, and the neuronal glutamate transporter EAAT3.

The assay was developed for the commercially available SURFE2R N1 instrument (Nanion Technologies GmbH) which applies solid supported membrane (SSM)-based electrophysiology. This technique is widely used for the functional characterization of membrane transporters with more than 100 different transporters characterized so far. The technique is cost-effective, easy to use, and capable of high-throughput measurements.

SSM-based electrophysiology utilizes SSM-coated gold sensors to physically adsorb membrane vesicles containing the protein of interest. A fast solution exchange provides the substrate and activates transport. For the measurement of PepT1 activity, we applied a peptide concentration jump to activate H+/peptide symport. Proton influx charges the sensor. A capacitive current is measured reflecting the transport activity of PepT1 . Multiple measurements on the same sensor allow for comparison of transport activity under different conditions. Here, we determine EC50 for PepT1-mediated glycylglycine transport and perform an inhibition experiment using the specific peptide inhibitor Lys[Z(NO2)]-Val.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazzone A, Barthmes M, Fendler K (2017) SSM-based electrophysiology for transporter research. Methods Enzymol 594:31–83

    Article  CAS  PubMed  Google Scholar 

  2. Pintschovius J, Fendler K, Bamberg E (1999) Charge translocation by the Na+/K+-ATPase investigated on solid supported membranes: cytoplasmic cation binding and release. Biophys J 76(2):827–836

    Google Scholar 

  3. Pintschovius J, Fendler K (1999) Charge translocation by the Na+/K+-ATPase investigated on solid supported membranes: rapid solution exchange with a new technique. Biophys J 76(2):814–826

    Google Scholar 

  4. Obrdlik P, Diekert K, Watzke N et al (2010) Electrophysiological characterization of ATPases in native synaptic vesicles and synaptic plasma membranes. Biochem J 427(1):151–159

    Article  CAS  PubMed  Google Scholar 

  5. Kelety B, Diekert K, Tobien J et al (2006) Transporter assays using solid supported membranes: a novel screening platform for drug discovery. Assay Drug Dev Technol 4(5):575–582

    Article  CAS  PubMed  Google Scholar 

  6. Tadini-Buoninsegni F, Bartolommei G, Moncelli MR et al (2004) Time-resolved charge translocation by sarcoplasmic reticulum Ca-ATPase measured on a solid supported membrane. Biophys J 86(6):3671–3686

    Article  PubMed  CAS  Google Scholar 

  7. Tadini-Buoninsegni F, Bartolommei G, Moncelli MR et al (2006) Pre-steady state electrogenic events of Ca2+/H+ exchange and transport by the Ca2+-ATPase. J Biol Chem 281(49):37720–37727

    Google Scholar 

  8. Bartolommei G, Moncelli MR, Rispoli G et al (2009) Electrogenic ion pumps investigated on a solid supported membrane: comparison of current and voltage measurements. Langmuir 25(18):10925–10931

    Article  CAS  PubMed  Google Scholar 

  9. Watzke N, Diekert K, Obrdlik P (2010) Electrophysiology of respiratory chain complexes and the ADP-ATP exchanger in native mitochondrial membranes. Biochemistry 49(48):10308–10318

    Article  CAS  PubMed  Google Scholar 

  10. Burzik C, Kaim G, Dimroth P et al (2003) Charge displacements during ATP-hydrolysis and synthesis of the Na+-transporting FoF1-ATPase of Ilyobacter tartaricus. Biophys J 85(3):2044–2054

    Google Scholar 

  11. Mattle D, Zhang L, Sitsel O et al (2015) A sulfur-based transport pathway in Cu+-ATPases. EMBO Rep 16(6):728–740

    Google Scholar 

  12. Tadini-Buoninsegni F, Bartolommei G, Moncelli MR et al (2010) ATP dependent charge movement in ATP7B Cu+-ATPase is demonstrated by pre-steady state electrical measurements. FEBS Lett 584(22):4619–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tadini-Buoninsegni F, Sordi G, Smeazzetto S et al (2017) Effect of cisplatin on the transport activity of PII-type ATPases. Metallomics 9(7):960–968

    Article  CAS  PubMed  Google Scholar 

  14. Li K-M, Wilkinson C, Kellosalo J et al (2016) Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun 7:13596

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shah NR, Wilkinson C, Harborne SPD et al (2017) Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation. Struct Dyn 4(3):32105

    Article  CAS  Google Scholar 

  16. Tadini-Buoninsegni F, Mikkelsen SA, Mogensen LS et al (2019) Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic. Proc Natl Acad Sci U S A 116(33):16332–16337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siebels I, Dröse S (2016) Charge translocation by mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica measured on solid-supported membranes. Biochem Biophys Res Commun 479(2):277–282

    Article  CAS  PubMed  Google Scholar 

  18. Seifert K, Fendler K, Bamberg E (1993) Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys J 64(2):384–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dolfi A, Tadini-Buoninsegni F, Moncelli MR et al (2002) Photocurrents generated by bacteriorhodopsin adsorbed on thiol/lipid bilayers supported by mercury. Langmuir 18(16):6345–6355

    Article  CAS  Google Scholar 

  20. Janke C, Scholz F, Becker-Baldus J et al (2013) Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 52(16):2750–2763

    Article  CAS  PubMed  Google Scholar 

  21. Henrich E, Sörmann J, Eberhardt P et al (2017) From gene to function: cell-free electrophysiological and optical analysis of ion pumps in nanodiscs. Biophys J 113(6):1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schulz P, Dueck B, Mourot A et al (2009) Measuring ion channels on solid supported membranes. Biophys J 97(1):388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niessen KV, Muschik S, Langguth F et al (2016) Functional analysis of Torpedo californica nicotinic acetylcholine receptors in multiple activation states by SSM-based electrophysiology. Toxicol Lett 247:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Niessen KV, Seeger T, Rappenglück S et al (2018) In vitro pharmacological characterization of the bispyridinium non-oxime compound MB327 and its 2- and 3-regioisomers. Toxicol Lett 293:190–197

    Article  CAS  PubMed  Google Scholar 

  25. Balannik V, Obrdlik P, Inayat S et al (2010) Solid-supported membrane technology for the investigation of the influenza A virus M2 channel activity. Pflugers Arch 459(4):593–605

    Article  CAS  PubMed  Google Scholar 

  26. Blesneac I, Ravaud S, Machillot P et al (2012) Assaying the proton transport and regulation of UCP1 using solid supported membranes. Eur Biophys J 41(8):675–679

    Article  CAS  PubMed  Google Scholar 

  27. Mikušević V, Schrecker M, Kolesova N et al (2019) A channel profile report of the unusual K+ channel KtrB. J Gen Physiol 151(12):1357–1368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zuber D, Krause R, Venturi M et al (2005) Kinetics of charge translocation in the passive downhill uptake mode of the Na+/H+ antiporter NhaA of Escherichia coli. Biochim Biophys Acta 1709(3):240–250

    Google Scholar 

  29. Mager T, Rimon A, Padan E et al (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J Biol Chem 286(26):23570–23581

    Google Scholar 

  30. Mager T, Braner M, Kubsch B et al (2013) Differential effects of mutations on the transport properties of the Na+/H+ antiporter NhaA from Escherichia coli. J Biol Chem 288(34):24666–24675

    Google Scholar 

  31. Patiño-Ruiz M, Fendler K, Călinescu O (2019) Mutation of two key aspartate residues alters stoichiometry of the NhaB Na+/H+ exchanger from Klebsiella pneumoniae. Sci Rep 9(1):15390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Călinescu O, Paulino C, Kühlbrandt W et al (2014) Keeping it simple, transport mechanism and pH regulation in Na+/H+ exchangers. J Biol Chem 289(19):13168–13176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Călinescu O, Linder M, Wöhlert D et al (2016) Electrogenic cation binding in the electroneutral Na+/H+ antiporter of Pyrococcus abyssi. J Biol Chem 291(52):26786–26793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Călinescu O, Fendler K (2015) A universal mechanism for transport and regulation of CPA sodium proton exchangers. Biol Chem 396(9–10):1091–1096

    Article  PubMed  CAS  Google Scholar 

  35. Geibel S, Flores-Herr N, Licher T et al (2006) Establishment of cell-free electrophysiology for ion transporters: application for pharmacological profiling. J Biomol Screen 11(3):262–268

    Article  PubMed  Google Scholar 

  36. Barthmes M, Liao J, Jiang Y et al (2016) Electrophysiological characterization of the archaeal transporter NCX_Mj using solid supported membrane technology. J Gen Physiol 147(6):485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulz P, Werner J, Stauber T et al (2010) The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS One 5(9):e12585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Garcia-Celma J, Szydelko A, Dutzler R (2013) Functional characterization of a ClC transporter by solid-supported membrane electrophysiology. J Gen Physiol 141(4):479–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rycovska A, Hatahet L, Fendler K et al (2012) The nitrite transport protein NirC from salmonella typhimurium is a nitrite/proton antiporter. Biochim Biophys Acta 1818(5):1342–1350

    Article  CAS  PubMed  Google Scholar 

  40. Wacker T, Garcia-Celma JJ, Lewe P et al (2014) Direct observation of electrogenic NH4+ transport in ammonium transport (Amt) proteins. Proc Natl Acad Sci U S A 111(27):9995–10000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pflüger T, Hernández CF, Lewe P et al (2018) Signaling ammonium across membranes through an ammonium sensor histidine kinase. Nat Commun 9(1):164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mirandela GD, Tamburrino G, Hoskisson PA et al (2019) The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB. FASEB J 33(2):1989–1999

    Article  CAS  PubMed  Google Scholar 

  43. Williamson G, Tamburrino G, Mirandela GD et al (2019) A two-lane mechanism for selective biological ammonium transport bioRxiv 849562

    Google Scholar 

  44. Srinivasan L, Baars TL, Fendler K et al (2016) Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems. Biochim Biophys Acta 1858(4):698–705

    Article  CAS  PubMed  Google Scholar 

  45. Weitz D, Harder D, Casagrande F et al (2007) Functional and structural characterization of a prokaryotic peptide transporter with features similar to mammalian PEPT1. J Biol Chem 282(5):2832–2839

    Article  CAS  PubMed  Google Scholar 

  46. Harder D, Stolz J, Casagrande F et al (2008) DtpB (YhiP) and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of Escherichia coli. FEBS J 275(13):3290–3298

    Article  CAS  PubMed  Google Scholar 

  47. Zhou A, Wozniak A, Meyer-Lipp K et al (2004) Charge translocation during cosubstrate binding in the Na+/proline transporter of E. coli. J Mol Biol 343(4):931–942

    Article  CAS  PubMed  Google Scholar 

  48. Raunser S, Appel M, Ganea C et al (2006) Structure and function of prokaryotic glutamate transporters from Escherichia coli and Pyrococcus horikoshii. Biochemistry 45(42):12796–12805

    Article  CAS  PubMed  Google Scholar 

  49. Krause R, Watzke N, Kelety B et al (2009) An automatic electrophysiological assay for the neuronal glutamate transporter mEAAC1. J Neurosci Methods 177(1):131–141

    Article  CAS  PubMed  Google Scholar 

  50. Wimmer F, Oberwinkler T, Bisle B et al (2008) Identification of the arginine/ornithine antiporter ArcD from Halobacterium salinarum. FEBS Lett 582(27):3771–3775

    Article  CAS  PubMed  Google Scholar 

  51. Ganea C, Pourcher T, Leblanc G et al (2001) Evidence for intraprotein charge transfer during the transport activity of the melibiose permease from Escherichia coli. Biochemistry 40(45):13744–13752

    Article  CAS  PubMed  Google Scholar 

  52. Ganea C, Meyer-Lipp K, Lemonnier R et al (2011) G117C MelB, a mutant melibiose permease with a changed conformational equilibrium. Biochim Biophys Acta 1808(10):2508–2516

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Celma JJ, Dueck B, Stein M et al (2008) Rapid activation of the melibiose permease MelB immobilized on a solid-supported membrane. Langmuir 24(15):8119–8126

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Celma JJ, Smirnova IN, Kaback HR et al (2009) Electrophysiological characterization of LacY. Proc Natl Acad Sci U S A 106(18):7373–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Celma JJ, Ploch J, Smirnova I et al (2010) Delineating electrogenic reactions during lactose/H+ symport. Biochemistry 49(29):6115–6121

    Article  CAS  PubMed  Google Scholar 

  56. Bazzone A, Madej MG, Kaback HR et al (2016) pH regulation of electrogenic sugar/H+ symport in MFS sugar permeases. PLoS One 11(5):e0156392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bazzone A, Zabadne AJ, Salisowski A et al (2017) A loose relationship: incomplete H+/sugar coupling in the MFS sugar transporter GlcP. Biophys J 113(12):2736–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gaiko O, Janausch I, Geibel S et al (2011) Robust electrophysiological assays using solid supported membranes: the organic cation transporter OCT2. Aust J Chem 64(1):31

    Article  CAS  Google Scholar 

  59. Gropp T, Brustovetsky N, Klingenberg M et al (1999) Kinetics of electrogenic transport by the ADP/ATP carrier. Biophys J 77(2):714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khafizov K, Perez C, Koshy C et al (2012) Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP. Proc Natl Acad Sci U S A 109(44):E3035–E3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perez C, Faust B, Mehdipour AR et al (2014) Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling. Nat Commun 5:4231

    Article  CAS  PubMed  Google Scholar 

  62. Choudhary P, Armstrong EJ, Jorgensen CC et al (2017) Discovery of compounds that positively modulate the high affinity choline transporter. Front Mol Neurosci 10:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Schulz P, Garcia-Celma JJ, Fendler K (2008) SSM-based electrophysiology. Methods 46(2):97–103

    Article  CAS  PubMed  Google Scholar 

  64. Knütter I, Hartrodt B, Theis S et al (2004) Analysis of the transport properties of side chain modified dipeptides at the mammalian peptide transporter PEPT1. Eur J Pharm Sci 21(1):61–67

    Article  PubMed  CAS  Google Scholar 

  65. Garcia-Celma JJ, Hatahet L, Kunz W et al (2007) Specific anion and cation binding to lipid membranes investigated on a solid supported membrane. Langmuir 23(20):10074–10080

    Article  CAS  PubMed  Google Scholar 

  66. Bazzone A, Costa W. S, Braner M, Cálinescu O, Hatahet L, Fendler K (2013) Introduction to solid supported membrane based electrophysiology. J Vis Exp (75):e50230

    Google Scholar 

  67. Eskandari S, Wright EM, Loo DD (2005) Kinetics of the reverse mode of the Na+/glucose cotransporter. J Membr Biol 204(1):23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Bazzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bazzone, A., Barthmes, M. (2020). Functional Characterization of SLC Transporters Using Solid Supported Membranes. In: Postis, V.L.G., Goldman, A. (eds) Biophysics of Membrane Proteins. Methods in Molecular Biology, vol 2168. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0724-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0724-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0723-7

  • Online ISBN: 978-1-0716-0724-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics