Skip to main content

Phage Display Methodologies

  • Protocol
  • First Online:
Peptide and Protein Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1128 Accesses

Abstract

In vitro selection of bacteriophages displaying specific protein binders from large combinatorial libraries is a well-established and very powerful technology. Therapeutic antibodies that have been evolved by phage display are now on the market and various non-antibody scaffolds are currently being developed as the next-generation competitors. In this chapter, after presenting the many possible proteins that can be engineered by phage display, we describe some modern methods for generating highly diverse phage libraries as well as selection protocols and experimental tips that will help researchers implementing the technology in their laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP (1985) Filamentous fusion phage – novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    CAS  PubMed  Google Scholar 

  2. Leemhuis H, Stein V, Griffiths AD, Hollfelder F (2005) New genotype-phenotype linkages for directed evolution of functional proteins. Curr Opin Struct Biol 15:472–478

    CAS  PubMed  Google Scholar 

  3. Sioud M (2019) Phage display libraries: from binders to targeted drug delivery and human therapeutics. Mol Biotechnol 61:286–303

    CAS  PubMed  Google Scholar 

  4. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Frei JC, Lai JR (2016) Protein and antibody engineering by phage display. Methods Enzymol 580:45–87

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S (2013) Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 18:1144–1157

    CAS  PubMed  Google Scholar 

  7. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13:51–76

    CAS  PubMed  Google Scholar 

  8. Sidhu SS, Geyer CR (2015) Phage display in biotechnology and drug discovery, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  9. Clackson T, Lowman HB (2004) Phage display: a practical approach. Oxford University Press, New York

    Google Scholar 

  10. O’Brien PM, Aitken R (2002) Antibody phage display – methods and protocols. Humana Press, Totowa

    Google Scholar 

  11. Barbas CF, Scott JK, Silverman G, Burton DR (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  12. Kay BK, Winter J, McCafferty J (1996) Phage display of peptides and proteins. A laboratory manual. Academic Press, San Diego

    Google Scholar 

  13. Shim H (2016) Therapeutic antibodies by phage display. Curr Pharm Des 22:6538–6559

    CAS  PubMed  Google Scholar 

  14. Chiu ML, Gilliland GL (2016) Engineering antibody therapeutics. Curr Opin Struct Biol 38:163–173

    CAS  PubMed  Google Scholar 

  15. Manoutcharian K, Perez-Garmendia R, Gevorkian G (2017) Recombinant antibody fragments for neurodegenerative diseases. Curr Neuropharmacol 15:779–788

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Azzazy HM, Highsmith WE Jr (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35:425–445

    CAS  PubMed  Google Scholar 

  17. Bradbury AR, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290:29–49

    CAS  PubMed  Google Scholar 

  18. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116

    CAS  PubMed  Google Scholar 

  19. Frenzel A, Kügler J, Helmsing S, Meier D, Schirrmann T, Hust M, Dübel S (2017) Designing human antibodies by phage display. Transfus Med Hemother 44:312–318

    PubMed  PubMed Central  Google Scholar 

  20. Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P, Hassanzadeh GG, Devoogdt N, Ackaert C, Vincke C, Muyldermans S (2016) Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des 22:6500–6518

    CAS  PubMed  Google Scholar 

  21. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G, Olichon A, Perez F (2016) NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife 5:e16228

    PubMed  PubMed Central  Google Scholar 

  22. Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L, Gera J, Gmür S, Spies P, Gygax D, Geertsma ER, Dawson RJ, Seeger MA (2018) Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife 7:e34317

    PubMed  PubMed Central  Google Scholar 

  23. McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, Erlandson SC, Hilger D, Rasmussen SGF, Ring AM, Manglik A, Kruse AC (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25:289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chanier T, Chames P (2019) Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies 8:E13

    PubMed  Google Scholar 

  25. Martin HL, Bedford R, Heseltine SJ, Tang AA, Haza KZ, Rao A, McPherson MJ, Tomlinson DC (2018) Non-immunoglobulin scaffold proteins: precision tools for studying protein-protein interactions in cancer. New Biotechnol 45:28–35

    CAS  Google Scholar 

  26. Gebauer M, Skerra A (2019) Engineering of binding functions into proteins. Curr Opin Biotechnol 60:230–241

    CAS  PubMed  Google Scholar 

  27. Škrlec K, Štrukelj B, Berlec A (2015) Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 33:408–418

    PubMed  Google Scholar 

  28. Sha F, Salzman G, Gupta A, Koide S (2017) Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci 26:910–924

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Renberg B, Nordin J, Merca A, Uhlen M, Feldwisch J, Nygren PA, Karlstrom AE (2007) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J Proteome Res 6:171–179

    CAS  PubMed  Google Scholar 

  30. Silverman J, Liu Q, Bakker A, To W, Duguay A, Alba BM, Smith R, Rivas A et al (2005) Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 23:1556–1561

    CAS  PubMed  Google Scholar 

  31. Koide A, Jordan MR, Horner SR, Batori V, Koide S (2001) Stabilization of a fibronectin type III domain by the removal of unfavorable electrostatic interactions on the protein surface. Biochemistry 40:10326–10333

    CAS  PubMed  Google Scholar 

  32. Legendre D, Soumillion P, Fastrez J (1999) Engineering a regulatable enzyme for homogeneous immunoassays. Nat Biotechnol 17:67–72

    CAS  PubMed  Google Scholar 

  33. Volkov AN, Barrios H, Mathonet P, Evrard C, Ubbink M, Declercq JP, Soumillion P, Fastrez J (2011) Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase. Chembiochem 12:904–913

    CAS  PubMed  Google Scholar 

  34. Non-antibody protein scaffolds: drugs and diagnostics market, 2017–2030 • ID: 4433324, https://www.researchandmarkets.com/research/cvwwgf/nonantibody

  35. Sheridan C (2007) Pharma consolidates its grip on post-antibody landscape. Nat Biotechnol 25:365–366

    CAS  PubMed  Google Scholar 

  36. Gill DS, Damle NK (2006) Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol 17:653–658

    CAS  PubMed  Google Scholar 

  37. Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15:772–777

    CAS  PubMed  Google Scholar 

  38. Hogbom M, Eklund M, Nygren PA, Nordlund P (2003) Structural basis for recognition by an in vitro evolved affibody. Proc Natl Acad Sci U S A 100:3191–3196

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wahlberg E, Lendel C, Helgstrand M, Allard P, Dincbas-Renqvist V, Hedqvist A, Berglund H, Nygren PA et al (2003) An affibody in complex with a target protein: structure and coupled folding. Proc Natl Acad Sci U S A 100:3185–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nilsson FY, Tolmachev V (2007) Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 10:167–175

    CAS  PubMed  Google Scholar 

  41. Nord K, Nord O, Uhlen M, Kelley B, Ljungqvist C, Nygren PA (2001) Recombinant human factor VIII-specific affinity ligands selected from phage-displayed combinatorial libraries of protein A. Eur J Biochem 268:4269–4277

    CAS  PubMed  Google Scholar 

  42. Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151

    CAS  PubMed  Google Scholar 

  43. Koide A, Gilbreth RN, Esaki K, Tereshko V, Koide S (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A 104:6632–6637

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sidhu SS, Kossiakoff AA (2007) Exploring and designing protein function with restricted diversity. Curr Opin Chem Biol 11:347–354

    CAS  PubMed  Google Scholar 

  45. Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci U S A 96:1898–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Richter A, Skerra A (2017) Anticalins directed against vascular endothelial growth factor receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging. Biol Chem 398:39–55

    CAS  PubMed  Google Scholar 

  47. Rothe C, Skerra A (2018) Anticalin® proteins as therapeutic agents in human diseases. BioDrugs 32:233–243

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoffmann T, Stadler LK, Busby M, Song Q, Buxton AT, Wagner SD, Davis JJ, Ko Ferrigno P (2010) Structure-function studies of an engineered scaffold protein derived from stefin A. I: Development of the SQM variant. Protein Eng Des Sel 23:403–413

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tiede C, Tang AA, Deacon SE, Mandal U, Nettleship JE, Owen RL, George SE, Harrison DJ, Owens RJ, Tomlinson DC, McPherson MJ (2014) Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng Des Sel 27:145–155

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tiede C, Bedford R, Heseltine SJ, Smith G et al (2017) Affimer proteins are versatile and renewable affinity reagents. elife 6:e24903

    PubMed  PubMed Central  Google Scholar 

  51. Kajava AV (2012) Tandem repeats in proteins: from sequence to structure. J Struct Biol 179:279–288

    CAS  PubMed  Google Scholar 

  52. Forrer P, Binz HK, Stumpp MT, Pluckthun A (2004) Consensus design of repeat proteins. Chembiochem 5:183–189

    CAS  PubMed  Google Scholar 

  53. Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grutter MG, Pluckthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582

    CAS  PubMed  Google Scholar 

  54. Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, Grutter MG, Forrer P, Pluckthun A (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem 280:24715–24722

    CAS  PubMed  Google Scholar 

  55. Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grutter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5:e7

    PubMed  Google Scholar 

  56. Steiner D, Forrer P, Stumpp MT, Pluckthun A (2006) Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 24:823–831

    CAS  PubMed  Google Scholar 

  57. Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    CAS  PubMed  Google Scholar 

  58. Lee SC, Park K, Han J, Lee JJ, Kim HJ, Hong S, Heu W, Kim YJ, Ha JS, Lee SG, Cheong HK, Jeon YH, Kim D, Kim HS (2012) Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proc Natl Acad Sci U S A 109:3299–3304

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hwang DE, Ryou JH, Oh JR, Han JW, Park TK, Kim HS (2016) Anti-human VEGF repebody effectively suppresses choroidal neovascularization and vascular leakage. PLoS One 11:e0152522

    PubMed  PubMed Central  Google Scholar 

  60. Urvoas A, Guellouz A, Valerio-Lepiniec M, Graille M, Durand D, Desravines DC, van Tilbeurgh H, Desmadril M, Minard P (2010) Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats. J Mol Biol 404:307–327

    CAS  PubMed  Google Scholar 

  61. Guellouz A, Valerio-Lepiniec M, Urvoas A, Chevrel A, Graille M, Fourati-Kammoun Z, Desmadril M, van Tilbeurgh H, Minard P (2013) Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). PLoS One 8:e71512

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Valerio-Lepiniec M, Urvoas A, Chevrel A, Guellouz A, Ferrandez Y, Mesneau A, de la Sierra-Gallay IL, Aumont-Nicaise M, Desmadril M, van Tilbeurgh H, Minard P (2015) The αRep artificial repeat protein scaffold: a new tool for crystallization and live cell applications. Biochem Soc Trans 43:819–824

    CAS  PubMed  Google Scholar 

  63. Chevrel A, Mesneau A, Sanchez D, Celma L, Quevillon-Cheruel S, Cavagnino A, Nessler S, Li de la Sierra-Gallay I, van Tilbeurgh H, Minard P, Valerio-Lepiniec M, Urvoas A (2018) Alpha repeat proteins (αRep) as expression and crystallization helpers. J Struct Biol 201:88–99

    CAS  PubMed  Google Scholar 

  64. Campanacci V, Urvoas A, Consolati T, Cantos-Fernandes S, Aumont-Nicaise M, Valerio-Lepiniec M, Surrey T, Minard P, Gigant B (2019) Selection and characterization of artificial proteins targeting the tubulin α subunit. Structure 27:497–506

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Campanacci V, Urvoas A, Cantos-Fernandes S, Aumont-Nicaise M, Arteni AA, Velours C, Valerio-Lepiniec M, Dreier B, Plückthun A, Pilon A, Poüs C, Minard P, Gigant B (2019) Insight into microtubule nucleation from tubulin-capping proteins. Proc Natl Acad Sci U S A 116:9859–9864

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chevrel A, Urvoas A, Li de la Sierra-Gallay I, Aumont-Nicaise M, Moutel S, Desmadril M, Perez F, Gautreau A, van Tilbeurgh H, Minard P, Valerio-Lepiniec M (2015) Specific GFP-binding artificial proteins (αRep): a new tool for in vitro to live cell applications. Biosci Rep 35:e00223

    PubMed  PubMed Central  Google Scholar 

  67. Di Meo T, Ghattas W, Herrero C, Velours C, Minard P, Mahy JP, Ricoux R, Urvoas A (2017) αRep A3: a versatile artificial scaffold for metalloenzyme design. Chemistry 23:10156–10166

    PubMed  Google Scholar 

  68. Léger C, Di Meo T, Aumont-Nicaise M, Velours C, Durand D, Li de la Sierra-Gallay I, van Tilbeurgh H, Hildebrandt N, Desmadril M, Urvoas A, Valerio-Lepiniec M, Minard P (2019) Ligand-induced conformational switch in an artificial bidomain protein scaffold. Sci Rep 9:1178

    PubMed  PubMed Central  Google Scholar 

  69. Gurunatha KL, Fournier AC, Urvoas A, Valerio-Lepiniec M, Marchi V, Minard P, Dujardin E (2016) Nanoparticles self-assembly driven by high affinity repeat protein pairing. ACS Nano 10:3176–3185

    CAS  PubMed  Google Scholar 

  70. Prasad J, Viollet S, Gurunatha KL, Urvoas A, Fournier AC, Valerio-Lepiniec M, Marcelot C, Baris B, Minard P, Dujardin E (2019) Directed evolution of artificial repeat proteins as habit modifiers for the morphosynthesis of (111)-terminated gold nanocrystals. Nanoscale. https://doi.org/10.1039/c9nr04497c

  71. Heyd B, Pecorari F, Collinet B, Adjadj E, Desmadril M, Minard P (2003) In vitro evolution of the binding specificity of neocarzinostatin, an enediyne-binding chromoprotein. Biochemistry 42:5674–5683

    CAS  PubMed  Google Scholar 

  72. Beekwilder J, Rakonjac J, Jongsma M, Bosch D (1999) A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins. Gene 228:23–31

    CAS  PubMed  Google Scholar 

  73. Rondot S, Koch J, Breitling F, Dubel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78

    CAS  PubMed  Google Scholar 

  74. Kirsch M, Zaman M, Meier D, Dubel S, Hust M (2005) Parameters affecting the display of antibodies on phage. J Immunol Methods 301:173–185

    CAS  PubMed  Google Scholar 

  75. Soltes G, Hust M, Ng KK, Bansal A, Field J, Stewart DI, Dubel S, Cha S et al (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637

    CAS  PubMed  Google Scholar 

  76. Chasteen L, Ayriss J, Pavlik P, Bradbury AR (2006) Eliminating helper phage from phage display. Nucleic Acids Res 34:e145

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fisher AC, Kim W, DeLisa MP (2006) Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci 15:449–458

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Speck J, Arndt KM, Müller KM (2011) Efficient phage display of intracellularly folded proteins mediated by the TAT pathway. Protein Eng Des Sel 24:473–484

    CAS  PubMed  Google Scholar 

  79. Fuh G, Sidhu SS (2000) Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Lett 480:231–234

    CAS  PubMed  Google Scholar 

  80. Rajan S, Sidhu SS (2012) Simplified synthetic antibody libraries. Methods Enzymol 502:3–23

    CAS  PubMed  Google Scholar 

  81. Gilbreth RN, Esaki K, Koide A, Sidhu SS, Koide S (2008) A dominant conformational role for amino acid diversity in minimalist protein-protein interfaces. J Mol Biol 381:407–418

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Galka P, Jamez E, Joachim G, Soumillion P (2017) QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLoS One 12:e0175146

    PubMed  PubMed Central  Google Scholar 

  83. Friguet B, Chaffotte AF, Djavadiohaniance L, Goldberg ME (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent-assay. J Immunol Methods 77:305–319

    CAS  PubMed  Google Scholar 

  84. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    CAS  PubMed  Google Scholar 

  85. Goldsmith M, Kiss C, Bradbury ARM, Tawfik DS (2007) Avoiding and controlling double transformation artifacts. Protein Eng Des Sel 20:315–318

    CAS  PubMed  Google Scholar 

  86. Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury ARM (2007) Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel 20:309–313

    CAS  PubMed  Google Scholar 

  87. Sblattero D, Bradbury A (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18:75–80

    CAS  PubMed  Google Scholar 

  88. Waterhouse P, Griffiths AD, Johnson KS, Winter G (1993) Combinatorial infection and invivo recombination – a strategy for making large phage antibody repertoires. Nucleic Acids Res 21:2265–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cen XD, Bi Q, Zhu SG (2006) Construction of a large phage display antibody library by in vitro package and in vivo recombination. Appl Microbiol Biotechnol 71:767–772

    CAS  PubMed  Google Scholar 

  90. Yau KY, Dubuc G, Li S, Hirama T, Mackenzie CR, Jermutus L, Hall JC, Tanha J (2005) Affinity maturation of a V(H)H by mutational hotspot randomization. J Immunol Methods 297:213–224

    CAS  PubMed  Google Scholar 

  91. Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA et al (2005) A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 102:8466–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260:359–368

    CAS  PubMed  Google Scholar 

  93. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348

    CAS  PubMed  Google Scholar 

  94. Zahnd C, Spinelli S, Luginbuhl B, Amstutz P, Cambillau C, Pluckthun A (2004) Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J Biol Chem 279:18870–18877

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Soumillion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Urvoas, A., Minard, P., Soumillion, P. (2020). Phage Display Methodologies. In: Iranzo, O., Roque, A. (eds) Peptide and Protein Engineering. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0720-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0720-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0719-0

  • Online ISBN: 978-1-0716-0720-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics