Skip to main content

Transcriptome-Wide Mapping of Protein–RNA Interactions

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

Abstract

RNA and RNA-binding proteins (RBPs) control multiple biological processes. The spatial and temporal arrangement of RNAs and RBPs underlies the delicate regulation of these processes. The strategy called CLIP-seq (cross-linking and immunoprecipitation) has been developed to capture endogenous protein–RNA interactions with UV cross-linking followed by immunoprecipitation. Despite the wide use of conventional CLIP-seq method in RBP study, the CLIP experiment is limited by the availability of the high-quality antibodies, potential contaminants from the co-purified RBPs, requirement of isotope manipulation, and potential loss of information during tedious experimental procedure. Here we described a modified CLIP-seq method called FbioCLIP-seq using the FLAG-Biotin tag tandem purification. Through tandem purification and stringent wash condition, almost all the interacting RNA-binding proteins are removed; thus the indirect interacting RNAs mediated by these co-purified RBPs are also decreased. Our FbioCLIP-seq method allows efficient detection of direct protein-bound RNAs without SDS-PAGE and membrane transfer procedure in an isotope-free and protein-specific antibody-free manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim B, Jeong K, Kim VN (2017) Genome-wide mapping of DROSHA cleavage sites on primary MicroRNAs and noncanonical substrates. Mol Cell 66(2):258–269. e255. https://doi.org/10.1016/j.molcel.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  2. Guallar D, Bi X, Pardavila JA, Huang X, Saenz C, Shi X, Zhou H, Faiola F, Ding J, Haruehanroengra P, Yang F, Li D, Sanchez-Priego C, Saunders A, Pan F, Valdes VJ, Kelley K, Blanco MG, Chen L, Wang H, Sheng J, Xu M, Fidalgo M, Shen X, Wang J (2018) RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat Genet 50(3):443–451. https://doi.org/10.1038/s41588-018-0060-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holmqvist E, Li L, Bischler T, Barquist L, Vogel J (2018) Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol Cell 70(5):971–982 . e976. https://doi.org/10.1016/j.molcel.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  4. Wei C, Xiao R, Chen L, Cui H, Zhou Y, Xue Y, Hu J, Zhou B, Tsutsui T, Qiu J, Li H, Tang L, Fu XD (2016) RBFox2 binds nascent RNA to globally regulate polycomb complex 2 targeting in mammalian genomes. Mol Cell 62(6):875–889. https://doi.org/10.1016/j.molcel.2016.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim DS, Camacho CV, Nagari A, Malladi VS, Challa S, Kraus WL (2019) Activation of PARP-1 by snoRNAs controls ribosome biogenesis and cell growth via the RNA helicase DDX21. Mol Cell 75(6):1270–1285. https://doi.org/10.1016/j.molcel.2019.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469. https://doi.org/10.1038/nature07488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2011) iCLIP--transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp 50:2638. https://doi.org/10.3791/26382638

    Article  Google Scholar 

  8. Zarnegar BJ, Flynn RA, Shen Y, Do BT, Chang HY, Khavari PA (2016) irCLIP platform for efficient characterization of protein-RNA interactions. Nat Methods 13(6):489–492. https://doi.org/10.1038/nmeth.3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, Blue SM, Nguyen TB, Surka C, Elkins K, Stanton R, Rigo F, Guttman M, Yeo GW (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13(6):508–514. https://doi.org/10.1038/nmeth.3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41:2034. https://doi.org/10.3791/20342034

    Article  Google Scholar 

  11. de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, Heck A, Grosveld F, Strouboulis J (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100(13):7480–7485. https://doi.org/10.1073/pnas.1332608100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bi X, Xu Y, Li T, Li X, Li W, Shao W, Wang K, Zhan G, Wu Z, Liu W, Lu JY, Wang L, Zhao J, Wu J, Na J, Li G, Li P, Shen X (2019) RNA targets Ribogenesis factor WDR43 to chromatin for transcription and Pluripotency control. Mol Cell 75(1):102–116. https://doi.org/10.1016/j.molcel.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138(4):696–708. https://doi.org/10.1016/j.cell.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Cho J, Chang H, Kwon SC, Kim B, Kim Y, Choe J, Ha M, Kim YK, Kim VN (2012) LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151(4):765–777. https://doi.org/10.1016/j.cell.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  15. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  16. Zhao C, Andreeva V, Gibert Y, LaBonty M, Lattanzi V, Prabhudesai S, Zhou Y, Zon L, McCann KL, Baserga S, Yelick PC (2014) Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development. PLoS Genet 10(1):e1004074. https://doi.org/10.1371/journal.pgen.1004074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilbert ML, Huelga SC, Kapeli K, Stark TJ, Liang TY, Chen SX, Yan BY, Nathanson JL, Hutt KR, Lovci MT, Kazan H, Vu AQ, Massirer KB, Morris Q, Hoon S, Yeo GW (2012) LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell 48(2):195–206. https://doi.org/10.1016/j.molcel.2012.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hunziker M, Barandun J, Petfalski E, Tan D, Delan-Forino C, Molloy KR, Kim KH, Dunn-Davies H, Shi Y, Chaker-Margot M, Chait BT, Walz T, Tollervey D, Klinge S (2016) UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat Commun 7:12090. https://doi.org/10.1038/ncomms12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim J, Cantor AB, Orkin SH, Wang JL (2009) Use of in vivo biotinylation to study protein-protein and protein-DNA interactions in mouse embryonic stem cells. Nat Protoc 4(4):506–517. https://doi.org/10.1038/nprot.2009.23

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci U S A 110(13):5004–5009. https://doi.org/10.1073/pnas.1218620110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9(2):263–293. https://doi.org/10.1038/nprot.2014.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Grant support is from the National Basic Research Program of China (2017YFA0504204, 2018YFA0107604), the National Natural Science Foundation of China (31630095), and the Center for Life Sciences at Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bi, X., Shen, X. (2020). Transcriptome-Wide Mapping of Protein–RNA Interactions. In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics