Skip to main content

A Genetic Cardiomyocyte Ablation Model for the Study of Heart Regeneration in Zebrafish

  • Protocol
  • First Online:
Cardiac Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2158))

Abstract

Adult zebrafish possess an elevated cardiac regenerative capacity as compared with adult mammals. In the past two decades, zebrafish have provided a key model system for studying the cellular and molecular mechanisms of innate heart regeneration. The ease of genetic manipulation in zebrafish has enabled the establishment of a genetic ablation injury model in which over 60% of cardiomyocytes can be depleted, eliciting signs of heart failure. After this severe injury, adult zebrafish efficiently regenerate lost cardiomyocytes and reverse heart failure. In this chapter, we describe the methods for inducing genetic cardiomyocyte ablation in adult zebrafish, assessing cardiomyocyte proliferation, and histologically analyzing regeneration after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA, Lavandero S (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2:e244. https://doi.org/10.1038/cddis.2011.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldspink DF, Burniston JG, Tan LB (2003) Cardiomyocyte death and the ageing and failing heart. Exp Physiol 88(3):447–458

    Article  CAS  PubMed  Google Scholar 

  3. Cui B, Zheng Y, Sun L, Shi T, Shi Z, Wang L, Huang G, Sun N (2018) Heart regeneration in adult mammals after myocardial damage. Acta Cardiol Sin 34(2):115–123. https://doi.org/10.6515/ACS.201803_34(2).20171206A

    Article  PubMed  PubMed Central  Google Scholar 

  4. Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3(12):701–712. https://doi.org/10.1002/emmm.201100175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K, Guidelines ESCCfP (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 10(10):933–989. https://doi.org/10.1016/j.ejheart.2008.08.005

    Article  PubMed  Google Scholar 

  6. Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ (2001) More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 3(3):315–322. https://doi.org/10.1016/s1388-9842(00)00141-0

    Article  CAS  PubMed  Google Scholar 

  7. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172

    Article  CAS  PubMed  Google Scholar 

  8. Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122(25):2727–2735. https://doi.org/10.1161/CIRCULATIONAHA.110.942268

    Article  PubMed  Google Scholar 

  9. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190. https://doi.org/10.1126/science.1077857

    Article  CAS  PubMed  Google Scholar 

  10. Chablais F, Veit J, Rainer G, Jazwinska A (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11:21. https://doi.org/10.1186/1471-213X-11-21

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674. https://doi.org/10.1242/dev.060897

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez-Rosa JM, Mercader N (2012) Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat Protoc 7(4):782–788. https://doi.org/10.1038/nprot.2012.025

    Article  CAS  PubMed  Google Scholar 

  13. Schnabel K, Wu CC, Kurth T, Weidinger G (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6(4):e18503. https://doi.org/10.1371/journal.pone.0018503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. https://doi.org/10.1038/nature08899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605. https://doi.org/10.1038/nature08804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143(5):729–740. https://doi.org/10.1242/dev.132910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430. https://doi.org/10.1242/dev.068601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D (2004) Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 24(17):7636–7642. https://doi.org/10.1128/MCB.24.17.7636-7642.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee P, Morley G, Huang Q, Fischer A, Seiler S, Horner JW, Factor S, Vaidya D, Jalife J, Fishman GI (1998) Conditional lineage ablation to model human diseases. Proc Natl Acad Sci U S A 95(19):11371–11376. https://doi.org/10.1073/pnas.95.19.11371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8):746–750. https://doi.org/10.1038/90795

    Article  CAS  PubMed  Google Scholar 

  21. Akazawa H, Komazaki S, Shimomura H, Terasaki F, Zou Y, Takano H, Nagai T, Komuro I (2004) Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure. J Biol Chem 279(39):41095–41103. https://doi.org/10.1074/jbc.M313084200

    Article  CAS  PubMed  Google Scholar 

  22. Breitman ML, Clapoff S, Rossant J, Tsui LC, Glode LM, Maxwell IH, Bernstein A (1987) Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238(4833):1563–1565

    Article  CAS  PubMed  Google Scholar 

  23. Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC, Karlstrom RO, Poss KD (2013) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140(3):660–666. https://doi.org/10.1242/dev.088526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

K.D.P. acknowledges support from National Institutes of Health (R35 HL150713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Poss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, F., Shoffner, A.R., Poss, K.D. (2021). A Genetic Cardiomyocyte Ablation Model for the Study of Heart Regeneration in Zebrafish. In: Poss, K.D., Kühn, B. (eds) Cardiac Regeneration. Methods in Molecular Biology, vol 2158. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0668-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0668-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0667-4

  • Online ISBN: 978-1-0716-0668-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics