Skip to main content

Genetic Lineage Tracing of Non-cardiomyocytes in Mice

  • Protocol
  • First Online:
Cardiac Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2158))

Abstract

Genetic lineage tracing is accomplished using bi-transgenic mice, where one allele is altered to express Cre recombinase, and another allele encodes a Cre-dependent genetic reporter protein. Once Cre is activated (constitutive or in response to tamoxifen), the marker gene-expressing cells become indelibly labeled by the reporter protein. Therefore, daughter cells derived from labeled cells are permanently labeled even if the marker gene that drove Cre recombinase expression is no longer expressed in these cells. This system is commonly used to label putative progenitor cells and determine the fate of their progeny. Here, we describe the use of c-kit-based genetic lineage-tracing mouse line as an example and discuss caveats for performing these types of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods San Diego Calif 24:71–80. https://doi.org/10.1006/meth.2001.1159

    Article  CAS  Google Scholar 

  2. van Berlo JH, Kanisicak O, Maillet M et al (2014) C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509:337–341. https://doi.org/10.1038/nature13309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genes 26:99–109

    Article  CAS  Google Scholar 

  4. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    Article  CAS  Google Scholar 

  5. Zhu XD, Sadowski PD (1995) Cleavage-dependent ligation by the FLP recombinase. Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. J Biol Chem 270:23044–23054. https://doi.org/10.1074/jbc.270.39.23044

    Article  CAS  PubMed  Google Scholar 

  6. Song H, Niederweis M (2007) Functional expression of the Flp recombinase in Mycobacterium bovis BCG. Gene 399:112–119. https://doi.org/10.1016/j.gene.2007.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Plummer NW, de Marchena J, Jensen P (2016) A knock-in allele of En1 expressing dre recombinase. Genes 54:447–454. https://doi.org/10.1002/dvg.22954

    Article  CAS  Google Scholar 

  8. Anastassiadis K, Fu J, Patsch C et al (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515. https://doi.org/10.1242/dmm.003087

    Article  CAS  PubMed  Google Scholar 

  9. Jaisser F (2000) Inducible gene expression and gene modification in transgenic mice. J Am Soc Nephrol 11(Suppl 16):S95–S100

    Article  CAS  Google Scholar 

  10. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757. https://doi.org/10.1006/bbrc.1997.7124

    Article  CAS  PubMed  Google Scholar 

  11. Hohenstein P, Slight J, Ozdemir DD et al (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. PathoGenetics 1:3. https://doi.org/10.1186/1755-8417-1-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu C (2013) Strategies for designing transgenic DNA constructs. Methods Mol Biol 1027:183–201. https://doi.org/10.1007/978-1-60327-369-5_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K (2003) Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res 31:e140. https://doi.org/10.1093/nar/gng140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abe T, Fujimori T (2013) Reporter mouse lines for fluorescence imaging. Develop Growth Differ 55:390–405. https://doi.org/10.1111/dgd.12062

    Article  CAS  Google Scholar 

  15. Abram CL, Roberge GL, Hu Y, Lowell CA (2014) Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J Immunol Methods 408:89–100. https://doi.org/10.1016/j.jim.2014.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersson KB, Winer LH, Mørk HK et al (2010) Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts. Transgenic Res 19:715–725. https://doi.org/10.1007/s11248-009-9342-4

    Article  CAS  PubMed  Google Scholar 

  17. Imai H, Hakkaku N, Iwamoto R et al (2009) Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem 284:32522–32532. https://doi.org/10.1074/jbc.M109.016139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitfield J, Littlewood T, Soucek L (2015) Tamoxifen administration to mice. Cold Spring Harb Protoc 2015:269–271. https://doi.org/10.1101/pdb.prot077966

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH to J.H.v.B. (HL130072) and from AHA to Z.C. (18IPA34110189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jop H. van Berlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Z., van Berlo, J.H. (2021). Genetic Lineage Tracing of Non-cardiomyocytes in Mice. In: Poss, K.D., Kühn, B. (eds) Cardiac Regeneration. Methods in Molecular Biology, vol 2158. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0668-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0668-1_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0667-4

  • Online ISBN: 978-1-0716-0668-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics